Jesper-Lykke Jacobsen 1, Jesus Salas 2, Alan D. Sokal 3
Journal of Statistical Physics 112 (2003) 921-1017
We study the chromatic polynomial P_G(q) for m \times n triangular-lattice strips of widths m <= 12_P, 9_F (with periodic or free transverse boundary conditions, respectively) and arbitrary lengths n (with free longitudinal boundary conditions). The chromatic polynomial gives the zero-temperature limit of the partition function for the q-state Potts antiferromagnet. We compute the transfer matrix for such strips in the Fortuin--Kasteleyn representation and obtain the corresponding accumulation sets of chromatic zeros in the complex q-plane in the limit n\to\infty. We recompute the limiting curve obtained by Baxter in the thermodynamic limit m,n\to\infty and find new interesting features with possible physical consequences. Finally, we analyze the isolated limiting points and their relation with the Beraha numbers.
- 1. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
CNRS : UMR8626 – Université Paris XI – Paris Sud - 2. Departamento de Física Teórica, Facultad de Ciencias,
Universidad de Zaragoza - 3. Department of Physics,
New York University