Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. IV. Chromatic polynomial with cyclic boundary conditions

Jesper Lykke Jacobsen, Jesus Salas 1

Journal of Statistical Physics 122 (2006) 705-760

We study the chromatic polynomial P_G(q) for m \times n square- and triangular-lattice strips of widths 2\leq m \leq 8 with cyclic boundary conditions. This polynomial gives the zero-temperature limit of the partition function for the antiferromagnetic q-state Potts model defined on the lattice G. We show how to construct the transfer matrix in the Fortuin–Kasteleyn representation for such lattices and obtain the accumulation sets of chromatic zeros in the complex q-plane in the limit n\to\infty. We find that the different phases that appear in this model can be characterized by a topological parameter. We also compute the bulk and surface free energies and the central charge.

  • 1. Grupo de Modelizacion, Simulacion Numerica y Matematica Industrial,
    Universidad Carlos III de Madrid
Retour en haut