Séminaire du LPTMS: Julia Meyer


11:00 - 12:00

LPTMS, salle 201, 2ème étage, Bât 100, Campus d'Orsay
15 Rue Georges Clemenceau, Orsay, 91405
Chargement de la carte…

Disordered topological metals

Julia Meyer (CEA Grenoble)

Topological behavior can be masked when disorder is present. A topological insulator, either intrinsic or interaction induced, may turn gapless when sufficiently disordered. Nevertheless, the metallic phase that emerges once a topological gap closes retains several topological characteristics. By considering the self-consistent disorder-averaged Green function of a topological insulator, we derive the condition for gaplessness. We show that the edge states survive in the gapless phase as edge resonances and that, similar to a doped topological insulator, the disordered topological metal also has a finite, but non-quantized topological index. We then consider the disordered Mott topological insulator. We show that within mean-field theory, the disordered Mott topological insulator admits a phase where the symmetry-breaking order parameter remains non-zero but the gap is closed, in complete analogy to ‘gapless superconductivity’ due to magnetic disorder.

Retour en haut