Chargement de la carte…
Momentum space topology, anomalous quantum Hall effect, and the absence of equilibrium static chiral magnetic effect
Mikhail A. Zubkov (ITEP, Moscow, Russia & LMPT, Université François Rabelais, Tours)
Using derivative expansion applied to the Wigner transform of the two – point Green function we analyze the anomalous quantum Hall effect (AQHE), and the chiral magnetic effect (CME). The corresponding currents are proportional to the momentum space topological invariants. We reproduce the conventional expression for the Hall conductivity in the ideal tight – binding models of (2+1) D topological insulators. At the same time using this method we prove, that in the equilibrium (3+1) D theory the static CME is absent in a certain class of solids, as well as in the properly regularized relativistic quantum field theory.
References:
- “Absence of equilibrium chiral magnetic effect”, Phys. Rev. D 93 (2016) no.10, 105036, doi:10.1103/PhysRevD.93.105036, arXiv:1605.08724 [hep-ph], by M. A. Zubkov
- “Wigner transformation, momentum space topology, and anomalous transport”, Annals Phys. 373 (2016) 298-324, doi:10.1016/j.aop.2016.07.011, arXiv:1603.03665 [cond-mat.mes-hall], by M. A. Zubkov