CoDaDri2: Difference between revisions

From Wiki Cours
Jump to navigation Jump to search
No edit summary
 
(120 intermediate revisions by 6 users not shown)
Line 1: Line 1:
=Breaking news:=


* Update with course schedule
This is the official page for the year 2022-2023 of the Computational and Data-Driven Physics (CoDaDri) course.


= Computational and Data Driven Physics =
== Breaking news ==


Example of theory exercises of past years for the January final examination:
* [https://drive.google.com/file/d/1zlqXeb9L0l39G85E3iTVwXOCOlq-FnR1/view?usp=sharing] Example 1: hypothesis testing
* [https://drive.google.com/file/d/13KrLvNXwpKb3vB-iUwzWxGsbJbH4vpHt/view?usp=sharing] Example 2: distribution of log-likelihoods
<!-- * You can find the solutions of the MCQ [https://colab.research.google.com/drive/16rPvG4ifcs2MMsaKYb9sxVlNbm-4JQGD?usp=sharing here]. The correct answers are marked in bold. -->
== Course description ==


Modern physics is characterized by an increasing complexity of systems under investigation, in
Modern physics is characterized by an increasing complexity of systems under investigation, in
Line 10: Line 17:
models to describe these systems and being able to make quantitative predictions from those models
models to describe these systems and being able to make quantitative predictions from those models
is extremely challenging. The goal of the course is to provide the tools and concepts necessary to tackle those systems.
is extremely challenging. The goal of the course is to provide the tools and concepts necessary to tackle those systems.
== Course description ==


We will first cover many algorithms used in many-body problems and complex systems, with special emphasis on Monte Carlo methods, molecular dynamics, and optimization in complex landscapes.  
We will first cover many algorithms used in many-body problems and complex systems, with special emphasis on Monte Carlo methods, molecular dynamics, and optimization in complex landscapes.  
Line 21: Line 26:
on programming and heavy numerics!  You will have to hand in 3 homeworks.
on programming and heavy numerics!  You will have to hand in 3 homeworks.


*[https://drive.google.com/file/d/11w7KI5Pi59VWLX1mqiQ8ZyY8YQHRUeMz/view?usp=sharing Preliminary version of the book: Information, Inference, Networks: From statistical physics to big biological data]
<!-- *[https://drive.google.com/file/d/11w7KI5Pi59VWLX1mqiQ8ZyY8YQHRUeMz/view?usp=sharing Preliminary version of the book: Information, Inference, Networks: From statistical physics to big biological data] -->


== The Team ==
== The Team ==
Line 27: Line 32:
* [http://lptms.u-psud.fr/alberto_rosso/ Alberto Rosso] (Computational physics)
* [http://lptms.u-psud.fr/alberto_rosso/ Alberto Rosso] (Computational physics)
* [http://www.phys.ens.fr/~monasson/ Rémi Monasson] (Data-driven physics)
* [http://www.phys.ens.fr/~monasson/ Rémi Monasson] (Data-driven physics)
* [http://www.lps.ens.fr/~cocco/ Simona Cocco]  & [https://www.cpht.polytechnique.fr/?q=en/node/110 Michel Ferrero] (Tutorials)
* [http://www.lps.ens.fr/~cocco/ Simona Cocco]  & Jorge Fernandez de Cossio Diaz & [https://www.cpht.polytechnique.fr/?q=en/node/110 Michel Ferrero] (Tutorials)
* [ Vincenzo Maria Schimmenti] (Tutor)
* [https://github.com/Schimmenti Vincenzo Maria Schimmenti] (Tutor)


== Where and When ==
== Where and When ==
Line 34: Line 39:
* Lectures on Fridays: 14:00-16:00
* Lectures on Fridays: 14:00-16:00
* Tutorials on Fridays: 16:00-18:00
* Tutorials on Fridays: 16:00-18:00
* ENS, 29 rue D'Ulm, salle Borel + Djebar
* JUSSIEU salle 24.34.201.
Don't be scared by the long number: it means that our new room is located in the corridor on the second floor, between tower 24 and tower 34 of Jussieu campus.


== Slack ==
== Slack ==


If you have questions or want to discuss topics related to the lecture, to the exercises or to the homeworks, you can use the
If you have questions or want to discuss topics related to the lecture, to the exercises or to the homeworks, you can use the
[XXX Computational and Data Driven Physics Slack]. In order to join the Slack
[https://computational-prb2883.slack.com/ssb/redirect Computational and Data Driven Physics Slack]. In order to join the Slack
use the following [XXX invitation link].
use the following [https://join.slack.com/t/computational-prb2883/shared_invite/zt-1fbx1i96a-CRDyBiOr~cn0LCdJZv~fEw invitation link].


== Computer Requirements ==
== Computer Requirements ==
Line 49: Line 55:


For practical installation, we recommand either to use  Anaconda (See [[Memento Python]]) or use google colab. <br>
For practical installation, we recommand either to use  Anaconda (See [[Memento Python]]) or use google colab. <br>
The Collaboratory platform from Google is quite good way to use powerful computer without buying one: It requires no specific hardware or software, and even allows you to use GPU computing for free,  all by writting a jupyter notebook that you can then share.
The [https://colab.research.google.com Colab platform] from Google is quite good way to use powerful computer without buying one: It requires no specific hardware or software, and even allows you to use GPU computing for free,  all by writting a jupyter notebook that you can then share.


== Grading ==
== Grading ==
Line 56: Line 62:
* Homework 1: 5 points  
* Homework 1: 5 points  
* Homework 2: 5 points
* Homework 2: 5 points
* Multiple Choice Questions in November: 10 points
* Multiple Choice Questions: 10 points
 
 
 
 


'''Data Driven Physics:'''
'''Data Driven Physics:'''
Line 66: Line 68:
* Final exam in January: 15 points
* Final exam in January: 15 points


== Schedule ==
== Schedule Computational Physics ==




Line 73: Line 75:
* [https://drive.google.com/file/d/1X9h3lKD0OZLTKtxb7DWPfynY42rRuE7j/view?usp=sharing Lecture 1]  Introduction to Monte Carlo
* [https://drive.google.com/file/d/1X9h3lKD0OZLTKtxb7DWPfynY42rRuE7j/view?usp=sharing Lecture 1]  Introduction to Monte Carlo


* [https://drive.google.com/file/d/1sIv3qOdyE-XYkjYC-dkNsR72f4BgaQ_y/view?usp=sharing Tutorial 1] Markov Matrix
* [https://colab.research.google.com/drive/1gf7oRQIpvSvMScyJa5hexB9CCZvdozPs#scrollTo=lDznlLouvlFx Tutorial 1] Markov matrices ([https://colab.research.google.com/drive/1x9iEHG_F522uFCvD_jGdvHaMETAHfO6-#scrollTo=eSu-nLZ6vm8X solutions])
 
* [https://colab.research.google.com/drive/1g7HXFUBQUBF0fhy5h2jYbfIAVBTqvb7-#scrollTo=U9LFX8OFhHOG Homework 1] (deadline September 23)
 
* Introductory notebooks: [https://colab.research.google.com/drive/1Ovrh1JjLzMMnxtasDgR1j84CHGU6hMxA python], [https://colab.research.google.com/drive/14PWu-C171pYhV8ven-Txc4wz5Tv1DCsK numpy] and [https://colab.research.google.com/drive/1fPjwrdxQPSyfXniyAHmyOcF_gK2fqjts matplotlib]




'''Friday, September 9, 2022'''
'''Friday, September 9, 2022'''


* Introductory notebooks: [https://colab.research.google.com/drive/1Ovrh1JjLzMMnxtasDgR1j84CHGU6hMxA python], [https://colab.research.google.com/drive/14PWu-C171pYhV8ven-Txc4wz5Tv1DCsK numpy] and [https://colab.research.google.com/drive/1fPjwrdxQPSyfXniyAHmyOcF_gK2fqjts matplotlib]
* [https://drive.google.com/file/d/15wrgivn6FSnuBUnMwjjhadmD-g1fkS7T/view?usp=sharing Lecture 2] Basic Sampling
 
* [https://colab.research.google.com/drive/1gf7oRQIpvSvMScyJa5hexB9CCZvdozPs#scrollTo=lDznlLouvlFx Tutorial 2] - Markov matrices ([https://colab.research.google.com/drive/1x9iEHG_F522uFCvD_jGdvHaMETAHfO6-#scrollTo=eSu-nLZ6vm8X solutions])


* [https://colab.research.google.com/drive/1tjqbjAi50C4qOqVRtTxEkTeTb10qpTms#scrollTo=uYpaubGkvogU Tutorial 3] - Thumb rule ([https://colab.research.google.com/drive/1aWVtz4ZGcpIarWiRVAnxrp1t0GDOqZxu#scrollTo=f7ohlMuZvqTr solutions])
* [https://colab.research.google.com/drive/1C93cApFZNJKQXi9YiBdKkXNBus88iZ9z#scrollTo=FEQYvp4cfvS0 Averages and error bars]


* [https://colab.research.google.com/drive/1g7HXFUBQUBF0fhy5h2jYbfIAVBTqvb7-#scrollTo=U9LFX8OFhHOG Homework 1] (deadline October 1)
* [https://colab.research.google.com/drive/1tjqbjAi50C4qOqVRtTxEkTeTb10qpTms#scrollTo=uYpaubGkvogU Tutorial 2] Thumb rule ([https://colab.research.google.com/drive/1aWVtz4ZGcpIarWiRVAnxrp1t0GDOqZxu#scrollTo=f7ohlMuZvqTr solutions])


<!--
* [https://colab.research.google.com/drive/1aMo4Ur-0_b4dGhdIfxAmCC2ci1rOda_v?usp=sharing Tutorial 2] Markov matrix [https://colab.research.google.com/drive/1Q5ajzxRGXBBorA9cQ9o8V5VUVJhUXpPS?usp=sharing problems]
* [https://colab.research.google.com/drive/1k60-ChM3aUWjGsiRsf2Idx9jxHHtwyAb?usp=sharing Tutorial 3] Thumb rule [https://colab.research.google.com/drive/1fdKJlp0lD4k530oRuu50_Hm_T8t3jixa?usp=sharing problems]
-->


'''Friday, September 16, 2022'''
'''Friday, September 16, 2022'''


* [https://drive.google.com/file/d/15wrgivn6FSnuBUnMwjjhadmD-g1fkS7T/view?usp=sharing Lecture 2] Basic Sampling
* [https://drive.google.com/file/d/1eY5cuNcJqYw7df0PBkxq03tEnqzTOC-5/view?usp=sharing Lecture 3 ]: Importance sampling


* [https://drive.google.com/file/d/1ALR_QKLXdHby54xNux39NUOk4L-Ne1EW/view?usp=sharing  Lecture 3]: Errors and Precision
* [https://colab.research.google.com/drive/1iaOGxdVgk--kWUFcMDHs0zvPhsOyhB_c Tutorial 3]: Faster than the clock algorithms ([https://colab.research.google.com/drive/1bHPnJpBd5ExqKF4G5BuV_FHPE4r0_AY2#scrollTo=fQnz_gOeq40e solutions])




Line 104: Line 104:
* [https://colab.research.google.com/drive/1sRUEs768Z6PKdJ3k7MixYeFGlufgjFrG Tutorial 4]: Ising model and phase transitions ([https://colab.research.google.com/drive/1KAQRog_YlAjKZ_hL1FMYurWdPBLNUocI solutions])
* [https://colab.research.google.com/drive/1sRUEs768Z6PKdJ3k7MixYeFGlufgjFrG Tutorial 4]: Ising model and phase transitions ([https://colab.research.google.com/drive/1KAQRog_YlAjKZ_hL1FMYurWdPBLNUocI solutions])


<!--
* Send your copy of Homework 1 to numphys.icfp  at  gmail.com Thanks!
* [https://colab.research.google.com/drive/1nU4E_pFWjSFPNigzy8-LcJpef26IKY6x?usp=sharing Tutorial 4]: Ising model and phase transitions [https://colab.research.google.com/drive/1AEUX3U7hxDR_YYy8ld3knTEVR1KYa9SP?usp=sharing problems]  
 
-->
* [https://colab.research.google.com/drive/1EPgj3la7vxDIqSQYNlOFz4rR0vHXAeae Homework 2] (deadline October 21)




Line 114: Line 114:


* [https://colab.research.google.com/drive/1ieT5BlfJsOehsa8r-LHGsFsn1dwYnawT Tutorial 5]: Simulated annealing ([https://colab.research.google.com/drive/1JNVl42KNASZiwTtqYo71z_vggjbGfKul solutions])
* [https://colab.research.google.com/drive/1ieT5BlfJsOehsa8r-LHGsFsn1dwYnawT Tutorial 5]: Simulated annealing ([https://colab.research.google.com/drive/1JNVl42KNASZiwTtqYo71z_vggjbGfKul solutions])
<!--
* [https://colab.research.google.com/drive/1p0ooWAXF9KNh-FztMHmVoA9yBzYOM8PC?usp=sharing Tutorial 5]: Simulated annealing [https://colab.research.google.com/drive/1txJGpzreHurWux7ev6sDsX8TjzpeQhZZ?usp=sharing problems]
-->
* Send your copy of Homework 1 to numphys.icfp  at  gmail.com  Thanks!
* [https://colab.research.google.com/drive/1EPgj3la7vxDIqSQYNlOFz4rR0vHXAeae Homework 2] (deadline October 22)




'''Friday, October 7, 2022'''
'''Friday, October 7, 2022'''


* Test: Multiple Choice Questions.  For each question you have 4 choices: 3 wrong and 1 correct: If you check the correct one you get a point. If you are wrong you loose 1/4 of a point.  No answer given: zero points.


* [https://drive.google.com/file/d/1eY5cuNcJqYw7df0PBkxq03tEnqzTOC-5/view?usp=sharing Lecture 7]: Importance sampling
* Solutions: You can find them [https://colab.research.google.com/drive/16rPvG4ifcs2MMsaKYb9sxVlNbm-4JQGD?usp=sharing here]. The correct answers are marked in bold.


* [https://colab.research.google.com/drive/1iaOGxdVgk--kWUFcMDHs0zvPhsOyhB_c Tutorial 7]: Faster than the clock algorithms ([https://colab.research.google.com/drive/1bHPnJpBd5ExqKF4G5BuV_FHPE4r0_AY2#scrollTo=fQnz_gOeq40e solutions])
== Schedule Data-driven Physics ==


<!--
* [https://colab.research.google.com/drive/1KyT442vB4EuGKBy_Xj3j8cLtMMl4gbac?usp=sharing Tutorial 6]: Faster than the clock algorithms [https://colab.research.google.com/drive/1C-ieAwaAKwkX5MFm8aX2kNO2GNeO9CdY?usp=sharing problems]
-->


Book on "From Statistical Physics to Data-Driven Modelling" by S. Cocco, R. Monasson, F. Zamponi [https://drive.google.com/file/d/1_I1MML-Le8SlT-NF6XJB5Jm5MD5FW0Xz/view?usp=sharing File]




'''Friday, October 14, 2022'''


* Lecture 6: Introduction to Bayesian inference
* Lecture 7: Introduction to Bayesian inference. Extra material: [https://drive.google.com/file/d/17VA5XWZ07aqWcvjQez64VqctAeWsJe69/view?usp=sharing Combinatorial identities by Hohle & Held 2006]


* Tutorial 6: Bayesian inference and single-particle tracking. [https://drive.google.com/file/d/1q9Quq5mvJ4Avv2qWgzTocU-DVIxJIVWi/view?usp=sharing Questions]. [https://drive.google.com/file/d/1xYb4wfNBysse6Q7frTw_V9TPdUQU5lUx/view?usp=sharing Data]. [https://drive.google.com/file/d/1Ba_kRo3_XMIaDLNYZlbZEw-wGXKS-29I/view?usp=sharing Starting Notebook]. [https://colab.research.google.com/drive/1VePL9X1JT6yl8LmROeZyMyf4Epcu3yOL#scrollTo=1XQNGa_fyEkJ Google colab version]. Solutions [https://drive.google.com/file/d/1Q9IjVUeL7AA8uWk8DX9Vy9vuUQ21RYh2/view?usp=sharing]. Notebook [https://drive.google.com/file/d/1ZJmpdaTQVUttEaaI1ch-reFfZGI93454/view?usp=sharing]
* Tutorial 7: Bayesian inference and single-particle tracking. [https://drive.google.com/file/d/1SeT5S0gS5MFFStwccRQ1R5v9uuk8Qqq4/view?usp=sharing Questions].  
[https://colab.research.google.com/drive/1DNHVysMQLdseIbgAEW_fgTXgngFqMg9-?usp=sharing Google Colab Starting Notebook].[https://colab.research.google.com/drive/1Wo4pkDfvzads4CNR2HibyeRTpIRYUqoq?usp=sharing Google Collab Solutions].[https://drive.google.com/file/d/1Q9IjVUeL7AA8uWk8DX9Vy9vuUQ21RYh2/view?usp=sharing Solutions].  
<!--[Notebook [https://drive.google.com/file/d/1ZJmpdaTQVUttEaaI1ch-reFfZGI93454/view?usp=sharing]-- [https://drive.google.com/file/d/1Ba_kRo3_XMIaDLNYZlbZEw-wGXKS-29I/view?usp=sharing Starting Notebook]. -->




'''Friday, October 14, 2022'''


 
'''Friday, October 21, 2022'''
 
 
'''Friday, October 22, 2021'''


* Lecture 8: Asymptotic inference and information. Extra material: Proof of Cramer-Rao bound [https://drive.google.com/file/d/10Ph_iP6AIQ3ps9v3FwRBO9j6-qV7oKV9/view?usp=sharing]
* Lecture 8: Asymptotic inference and information. Extra material: Proof of Cramer-Rao bound [https://drive.google.com/file/d/10Ph_iP6AIQ3ps9v3FwRBO9j6-qV7oKV9/view?usp=sharing]


* Tutorial 8: [https://drive.google.com/file/d/12cG4HBvzs9Oe1mbfuEYyRDmTEamW71pR/view?usp=sharing Questions]. [https://drive.google.com/file/d/1AL8sRtnqYUI8NbubfglgLazknaVIUJEo/view?usp=sharing Data ] [https://drive.google.com/file/d/1DTLzXLZUEPzoU2SsDMcAe8GaoYX8E5gH/view?usp=sharing Starting Notebook]. [https://drive.google.com/file/d/1QpMaM5ACmKUlFAyGvRnHvFVtQoEAF7-9/view?usp=sharing Bibliography] [https://drive.google.com/file/d/1p9v1PkJhwS8Ofg4RiC1nsFJAe8Mb_6WF/view?usp=sharing Solutions].  [https://drive.google.com/file/d/19erJJ4Gjw77n57VrnqaQPCxIh_-NScYT/view?usp=sharing Notebook].
* Tutorial 8:Analysis of quantum trajectories of atoms in a cavity to infer the numbers of photons in the cavity. [https://drive.google.com/file/d/103-vCGVnY7QNUUo08f6mv6UlGmK85iZ6/view?usp=sharing Questions]. [https://drive.google.com/file/d/14bsrCZQVLY-vMqKAH8AFo7F2A1Jsz0Se/view?usp=sharing   Google Collab Starting notebook].[https://drive.google.com/file/d/1QpMaM5ACmKUlFAyGvRnHvFVtQoEAF7-9/view?usp=sharing Bibliography] [https://drive.google.com/file/d/1-jJBjR8wv2pfANoiWKXltEP0R1n9ZP1g/view?usp=sharing Solutions][https://colab.research.google.com/drive/1Wk0uH9UbHi3HkABVjBlzeTDFcncolVLN?usp=sharing=sharing Google Collab Solutions].
  <!--[https://drive.google.com/file/d/1DTLzXLZUEPzoU2SsDMcAe8GaoYX8E5gH/view?usp=sharing Starting Notebook] -->


* Send your copy of Homework 2 to numphys.icfp  at  gmail.com  Thanks!
* Send your copy of Homework 2 to numphys.icfp  at  gmail.com  Thanks!




'''Friday, October 29, 2021'''
'''Friday, October 28, 2022'''


* Lecture 9: High-dimensional inference and Principal Component Analysis. Extra material: Handwritten notes on the derivation of Marcenko-Pastur spectral density [https://drive.google.com/file/d/10Yytv9itdWDDHTsM2lQHwQDMbcf-oVnd/view?usp=sharing]
* Lecture 9: High-dimensional inference and Principal Component Analysis. Extra material: Handwritten notes on the derivation of Marcenko-Pastur spectral density [https://drive.google.com/file/d/10Yytv9itdWDDHTsM2lQHwQDMbcf-oVnd/view?usp=sharing]


* Tutorial 9: [https://drive.google.com/file/d/10y7m1mPf5R5zZN6661Eei92IUNhBL_Zu/view?usp=sharing Replay of the neuronal activity during sleep after a task].[https://drive.google.com/file/d/11fO26XB6Ri3HDVBvtdBkYxcTRLk1iv5F/view?usp=sharing Data ]. [https://drive.google.com/file/d/1-MFN2ERs_eNs4w6XnLjfzsu2F9REluSt/view?usp=sharing Initial Notebook]. [https://drive.google.com/file/d/11ev4Zwn6DPYLwhMsLyp8S0aQFVu77Ou3/view?usp=sharing Biblio].
* Tutorial 9: Replay of the neuronal activity during sleep after a task [https://drive.google.com/file/d/112_PGk57Ateg8UxHhS40maeZj5cNUn8G/view?usp=sharing   Questions]. [https://drive.google.com/file/d/11ev4Zwn6DPYLwhMsLyp8S0aQFVu77Ou3/view?usp=sharing Biblio].
[https://drive.google.com/file/d/11E75QwrJgDKrutGj9t5NJTRkGtuRgoBI/view?usp=sharing Solutions]. [https://drive.google.com/file/d/1-39oZNNB-35zM4V2tLWtubQnZTdMLtIz/view?usp=sharing Notebook]
<!-- [https://drive.google.com/file/d/11R21V9kJnS6Igfdc-ZmbOs-uVw4xAtH2/view?usp=sharing Solutions]. [https://drive.google.com/file/d/1-39oZNNB-35zM4V2tLWtubQnZTdMLtIz/view?usp=sharing Notebook][https://drive.google.com/file/d/1-MFN2ERs_eNs4w6XnLjfzsu2F9REluSt/view?usp=sharing Initial Notebook] -->
[https://colab.research.google.com/drive/1xxuQjJAYPJLXVqUXTm75dFdyn0vDxEzj?usp=sharing Starting Notebook on Google Colab].
[https://colab.research.google.com/drive/139ETiVJa8ZHvjwPcnv1aieK9buM00zt3?usp=sharing Tutorial Solution on Google Colab].


[https://drive.google.com/file/d/18CrQkbu_8rMUz84pzCFSHP4sNybuY0NF/view?usp=sharing Homework 3 Starting Notebook on Google Colab].
(Send your copy of Homework 3 to numphys.icfp at gmail.com by December 1).
[https://colab.research.google.com/drive/1W5V_-6jPZIQsnZH9Lk4aFZryQ6z7dgyN?usp=sharing Homework 3 Solutions on Google Colab].
[https://docs.google.com/document/d/1a8IuIGceWMR_PvidwCxpMGsHNvEyOV-H/edit?usp=sharing&ouid=117098638067589756688&rtpof=true&sd=true Solution comments]


'''Friday, November 25, 2022'''


'''Friday, November 12, 2021, 2 pm: The Quiz.'''
* Lecture 10: Priors, regularisation, sparsity


The MCQ is composed of 19 questions (one of them counts for two). For each question you have 4 choices: 3 wrong and 1 correct: If you check the correct one you get a point. If you are wrong you loose 1/4 of a point. No answer given: zero points.
* Tutorial 10:
[https://drive.google.com/file/d/1J5WTb1SvKZz3Px_nbtKYkFBQYwmSWF54/view?usp=sharing Bayesian Inference and Priors for the analysis of gravitational waves (Notes)].  
[https://drive.google.com/file/d/1CyiDlXs6ez9-7gnyeBU0YRgV7Nt5ibkn/view?usp=sharing Biblio]
[https://colab.research.google.com/drive/1e9q4QKgulmMLvcdAAWOdTX37ygNuJ2Hi?usp=sharing Starting notebook on artificial data].
[https://colab.research.google.com/drive/1ibEYkzAaa_nJqkmd2XUlrcA__-op-Z5E?usp=sharing Notebook on real data]
[https://colab.research.google.com/drive/1v651xLgcEwjqjfDHwwPqiIwwuxf00iI3?usp=sharing Solutions (Artificial data)]
<!--[https://drive.google.com/file/d/17qhYN8EFpcoCUHOM_juBvEGpu61GgJRx/view?usp=sharing Corrections ] -->




MCQ Solution (correct answers in bold):[https://drive.google.com/file/d/1WWcqxFzmCJp2ZXC02a70a1o17pGupdyZ/view?usp=sharing]
'''Friday, December 2, 2022'''


* Lecture 11: Hidden Markov Models. Extra material: Pedagogical introduction to Kalman filters [https://drive.google.com/file/d/0B4HvoS7Zt11LZUxVLTkyVXRQRUE/view?usp=sharing&resourcekey=0-CzsYaRIrPP2sN-UmwfiLHQ]
* Tutorial 11: Hidden Markov Models. [https://drive.google.com/file/d/1OIl7NFWtz8zR_OHkhX9vGvyKrxzHz9Do/view?usp=share_link Questions] [https://colab.research.google.com/drive/19iu2kCJi_JWej9u5xYFl1xlawt6YAT9n#scrollTo=MBc6-68_4p-8 Starting notebook]
[https://colab.research.google.com/drive/1EVCN6av94zSFzRF7lvVLLNNw6XRgP1nU?usp=sharing Solutions]


'''Friday, November 26, 2021'''
<!--
Tutorial 11:[https://drive.google.com/file/d/1A5pcJICHkmHZYoa2uoAGSAWp-_ZOaIEf/view?usp=sharing Analysis of protein sequence data to infer protein structure] [https://drive.google.com/file/d/1COKr5pNoBRFwwnj7TWPQSU8mEWKvsLud/view?usp=sharing Starting notebook and data] <!--[https://drive.google.com/file/d/1CQw1PQ6RSS6nuGxhkwOqe7LJHpOPIaVp/view?usp=sharing Biblio][https://drive.google.com/file/d/1CslX27bTp5gyhXV4ciFE8s1zMnBgJ-1O/view?usp=sharing Solutions] [https://drive.google.com/file/d/19X59x3TdIsJaccTZE71gCbZxFbOzlhj4/view?usp=sharing Final notebook]
-->


* Lecture 10: Priors, regularisation, sparsity
'''Friday, December 9, 2021'''


* Tutorial 10: [https://drive.google.com/file/d/14kaGKRm7uciT7uLVMW_Vqzr8ha-V-Ra2/view?usp=sharing Bayesian Inference and Priors for the analysis of gravitational waves]. [https://drive.google.com/file/d/16UTmpwKm-7UMcIbca8IIGsO-aCmcwKuD/view?usp=sharing Starting notebook on artificial data]. [https://drive.google.com/file/d/1CyiDlXs6ez9-7gnyeBU0YRgV7Nt5ibkn/view?usp=sharing Biblio][https://colab.research.google.com/drive/1pFMOawozlYOIpy0jQWkTfoq-tFp3uvhw?usp=sharing#scrollTo=6picRNBipcYN Notebook on real data]
* Lecture 12: Probabilistic graphical models
[https://drive.google.com/file/d/161ZLuq5s2RpHDJWELFSKXqlf-qwrVrxA/view?usp=sharing Notebook on Artificial data] [https://drive.google.com/file/d/17qhYN8EFpcoCUHOM_juBvEGpu61GgJRx/view?usp=sharing Corrections ]


<!--
* Tutorial 12:
[https://drive.google.com/file/d/1FLbWZRWJ1JILZV41RjwVKR7mOhNMhLV9/view?usp=sharing Hidden Markov Models Hidden  for identification of recombinations in SARS-CoV-2 viral genomes] [https://drive.google.com/file/d/1FCAg0ihMWoAk-_dtt5ORncjVjkVu-m4D/view?usp=sharing Starting Notebook and Data]
-->


<!--[https://drive.google.com/file/d/1HMREe6ge7_K-lOKC4f2FwL7vnEa1_8Yf/view?usp=sharing Bibliography] [https://drive.google.com/file/d/1FLDBJmNtXogHiO5VfScGiePTCxMFy1KZ/view?usp=sharing Final Notebook] [https://drive.google.com/file/d/1FBQaNJ2RhjwW_VSut2oC7mZYl5F8RWfS/view?usp=sharing Solutions] -->




'''Friday, December 3, 2021'''
'''Friday, December 16, 2022'''


* Lecture 11: Probabilistic graphical models
Tutorial 13: Inferring structural contacts from protein sequences
[https://drive.google.com/file/d/1a5uOdBkZpkGkWYtekW9_EhJljwIvgkYG/view?usp=sharing Notes]
[https://colab.research.google.com/drive/1AKuUPY9l_ENizcijO0V0dncaLGLUAMXH?usp=sharing Start Notebook]
[https://colab.research.google.com/drive/1QRt6xLnhE6z1R_M5Pcil99NNccJt2CxB?usp=sharing Solutions]


* Tutorial 11:[https://drive.google.com/file/d/1A5pcJICHkmHZYoa2uoAGSAWp-_ZOaIEf/view?usp=sharing Analysis of protein sequence data to infer protein structure] [https://drive.google.com/file/d/1COKr5pNoBRFwwnj7TWPQSU8mEWKvsLud/view?usp=sharing Starting notebook and data] [https://drive.google.com/file/d/1CQw1PQ6RSS6nuGxhkwOqe7LJHpOPIaVp/view?usp=sharing Biblio][https://drive.google.com/file/d/1CslX27bTp5gyhXV4ciFE8s1zMnBgJ-1O/view?usp=sharing Solutions] [https://drive.google.com/file/d/19X59x3TdIsJaccTZE71gCbZxFbOzlhj4/view?usp=sharing Final notebook]
'''Friday, January 06, 2023'''


EXAM.


'''Friday, December 10, 2021'''
[https://drive.google.com/file/d/1mhf9nMa-MzkwdOlGGLlsp_Miu_Ot1i0N/view?usp=sharing Theoretical exercises]
[https://colab.research.google.com/drive/1GwP-j7zmS8E74QPGmFoZAyWJB3c9Pl56#scrollTo=f4YJsCKC3h7N Practical notebook (Google Colab version)]
[https://drive.google.com/file/d/1mx_kqt7-9ekYIlS2zhkEY41nesHan7BB/view?usp=sharing Practical notebook & data (Local notebook version)]


* Lecture 12: Hidden Markov Models. Extra material: Pedagogical introduction to Kalman filters [https://drive.google.com/file/d/0B4HvoS7Zt11LZUxVLTkyVXRQRUE/view?usp=sharing&resourcekey=0-CzsYaRIrPP2sN-UmwfiLHQ]
For the WiFi:
 
    - Sélectionner "WIFI-GUEST"
* Tutorial 12:  
    - Mot de passe : PhysiqueENS
[https://drive.google.com/file/d/1FLbWZRWJ1JILZV41RjwVKR7mOhNMhLV9/view?usp=sharing Hidden Markov Models Hidden  for identification of recombinations in SARS-CoV-2 viral genomes] [https://drive.google.com/file/d/1FCAg0ihMWoAk-_dtt5ORncjVjkVu-m4D/view?usp=sharing Starting Notebook and Data][https://drive.google.com/file/d/1HMREe6ge7_K-lOKC4f2FwL7vnEa1_8Yf/view?usp=sharing Bibliography] [https://drive.google.com/file/d/1FLDBJmNtXogHiO5VfScGiePTCxMFy1KZ/view?usp=sharing Final Notebook] [https://drive.google.com/file/d/1FBQaNJ2RhjwW_VSut2oC7mZYl5F8RWfS/view?usp=sharing Solutions]
    - Ouverture automatique d'une page web dans le navigateur (par défaut),
 
    - Saisir le "Super secret password" : exam.m2.icfp@phys.ens.fr (Ce n'est pas une vraie adresse)
 
 
'''Friday, December 17, 2021'''


<!--
* Lecture 13: Unsupervised learning and representations
* Lecture 13: Unsupervised learning and representations


* [https://colab.research.google.com/drive/1p2c35gHMr4_Ptdmwsh3jGJz__9NNIgLw Tutorial 13]: How restricted Boltzmann machines learn ([https://colab.research.google.com/drive/1gnaK_vmTESTV3Ex_A1gqcee6Q58iKyld solutions])
* Tutorial 13: How restricted Boltzmann machines learn
 
-->


'''Final examination of the data-driven course (January 7, 2022)'''
<!-- '''Final examination of the data-driven course (January 7, 2022)'''


* Example of exam: On-line Principal Component Analysis [https://drive.google.com/file/d/1BbRY4b3OCVYAtYH4m6ry19KcA2gkp3pH/view?usp=sharing]
* Example of exam: On-line Principal Component Analysis [https://drive.google.com/file/d/1BbRY4b3OCVYAtYH4m6ry19KcA2gkp3pH/view?usp=sharing]
Line 212: Line 230:
* On-line version of the book [https://drive.google.com/file/d/161YHZA7i2YU-8emy6IPUFhsOXzFRxSRS/view?usp=sharing]
* On-line version of the book [https://drive.google.com/file/d/161YHZA7i2YU-8emy6IPUFhsOXzFRxSRS/view?usp=sharing]


* Examination repository [https://drive.google.com/file/d/19DNkNBed0Ir5a9N048ZFV4_xF0KG3kcy/view?usp=sharing]
* Examination repository [https://drive.google.com/file/d/19DNkNBed0Ir5a9N048ZFV4_xF0KG3kcy/view?usp=sharing] -->

Latest revision as of 14:55, 6 January 2023

This is the official page for the year 2022-2023 of the Computational and Data-Driven Physics (CoDaDri) course.

Breaking news

Example of theory exercises of past years for the January final examination:

  • [1] Example 1: hypothesis testing
  • [2] Example 2: distribution of log-likelihoods


Course description

Modern physics is characterized by an increasing complexity of systems under investigation, in domains as diverse as condensed matter, astrophysics, biophysics, etc. Establishing adequate models to describe these systems and being able to make quantitative predictions from those models is extremely challenging. The goal of the course is to provide the tools and concepts necessary to tackle those systems.

We will first cover many algorithms used in many-body problems and complex systems, with special emphasis on Monte Carlo methods, molecular dynamics, and optimization in complex landscapes.

Second, we will provide statistical inference and machine learning tools to harness the growing availability of experimental data to design accurate models of the underlying, complex, strongly non-homogeneous and interacting systems.

Each theoretical lecture will be followed by a tutorial illustrating the concepts with practical applications borrowed from various domains of physics. We will focus on methods and algorithms and physics, not on programming and heavy numerics! You will have to hand in 3 homeworks.


The Team

Where and When

  • Lectures on Fridays: 14:00-16:00
  • Tutorials on Fridays: 16:00-18:00
  • JUSSIEU salle 24.34.201.

Don't be scared by the long number: it means that our new room is located in the corridor on the second floor, between tower 24 and tower 34 of Jussieu campus.

Slack

If you have questions or want to discuss topics related to the lecture, to the exercises or to the homeworks, you can use the Computational and Data Driven Physics Slack. In order to join the Slack use the following invitation link.

Computer Requirements

No previous experience in programming is required.

Programming Language: Python

For practical installation, we recommand either to use Anaconda (See Memento Python) or use google colab.
The Colab platform from Google is quite good way to use powerful computer without buying one: It requires no specific hardware or software, and even allows you to use GPU computing for free, all by writting a jupyter notebook that you can then share.

Grading

Computational Physics:

  • Homework 1: 5 points
  • Homework 2: 5 points
  • Multiple Choice Questions: 10 points

Data Driven Physics:

  • Homework 3: 5 points
  • Final exam in January: 15 points

Schedule Computational Physics

Friday, September 2, 2022


Friday, September 9, 2022


Friday, September 16, 2022


Friday, September 23, 2022

  • Send your copy of Homework 1 to numphys.icfp at gmail.com Thanks!


Friday, September 30, 2022


Friday, October 7, 2022

  • Test: Multiple Choice Questions. For each question you have 4 choices: 3 wrong and 1 correct: If you check the correct one you get a point. If you are wrong you loose 1/4 of a point. No answer given: zero points.
  • Solutions: You can find them here. The correct answers are marked in bold.

Schedule Data-driven Physics

Book on "From Statistical Physics to Data-Driven Modelling" by S. Cocco, R. Monasson, F. Zamponi File


Friday, October 14, 2022

  • Tutorial 7: Bayesian inference and single-particle tracking. Questions.

Google Colab Starting Notebook.Google Collab Solutions.Solutions.


Friday, October 21, 2022

  • Lecture 8: Asymptotic inference and information. Extra material: Proof of Cramer-Rao bound [3]
  • Send your copy of Homework 2 to numphys.icfp at gmail.com Thanks!


Friday, October 28, 2022

  • Lecture 9: High-dimensional inference and Principal Component Analysis. Extra material: Handwritten notes on the derivation of Marcenko-Pastur spectral density [4]
  • Tutorial 9: Replay of the neuronal activity during sleep after a task Questions. Biblio.

Starting Notebook on Google Colab. Tutorial Solution on Google Colab.

Homework 3 Starting Notebook on Google Colab. (Send your copy of Homework 3 to numphys.icfp at gmail.com by December 1). Homework 3 Solutions on Google Colab. Solution comments

Friday, November 25, 2022

  • Lecture 10: Priors, regularisation, sparsity
  • Tutorial 10:

Bayesian Inference and Priors for the analysis of gravitational waves (Notes). Biblio Starting notebook on artificial data. Notebook on real data Solutions (Artificial data)


Friday, December 2, 2022

  • Lecture 11: Hidden Markov Models. Extra material: Pedagogical introduction to Kalman filters [5]
  • Tutorial 11: Hidden Markov Models. Questions Starting notebook

Solutions


Friday, December 9, 2021

  • Lecture 12: Probabilistic graphical models



Friday, December 16, 2022

Tutorial 13: Inferring structural contacts from protein sequences Notes Start Notebook Solutions

Friday, January 06, 2023

EXAM.

Theoretical exercises Practical notebook (Google Colab version) Practical notebook & data (Local notebook version)

For the WiFi:

   - Sélectionner "WIFI-GUEST"
   - Mot de passe : PhysiqueENS
   - Ouverture automatique d'une page web dans le navigateur (par défaut),
   - Saisir le "Super secret password" : exam.m2.icfp@phys.ens.fr (Ce n'est pas une vraie adresse)