L-1: Difference between revisions
Jump to navigation
Jump to search
(Created page with "djdjjnr") |
No edit summary |
||
Line 1: | Line 1: | ||
= Spin glass Transition = | |||
== Experiments == | |||
Parlare dei campioni di rame dopati con il magnesio, marino o no: trovare due figure una di suscettivita e una di calore specifico, prova della transizione termodinamica. | |||
==Edwards Anderson model== | |||
We consider an Ising model with <math>N </math> spins <math>\sigma_i=\pm 1</math> and i.i.d. coupling <math>J_{ij} </math> drawn from a distribution $\pi(J)$. | |||
It is crucial to assume that the mean value of the couplings is zero, otherwise the model displays ferro/antiferro order. | |||
We indicate the avergage over the couplings (namely the average over the disorder) with an overline. In this case we have | |||
<\math><\center> | |||
\overline{J_{ij}}=0 | |||
</math></center> | |||
Hence the energy associated to a given configuration <math> \sigma_i=\pm 1</math> | |||
with zero average. | |||
The | |||
For simplicity we assume | |||
<\math> | |||
H= \sum_{ i j } J_{ij} \sigma_i \sigma_j | |||
</math></center> | |||
== Edwards Anderson order parameter== | |||
== The SK model == | |||
== Random energy model == | |||
=== Derivation=== | |||
=== |
Revision as of 15:02, 12 November 2023
Spin glass Transition
Experiments
Parlare dei campioni di rame dopati con il magnesio, marino o no: trovare due figure una di suscettivita e una di calore specifico, prova della transizione termodinamica.
Edwards Anderson model
We consider an Ising model with spins and i.i.d. coupling drawn from a distribution $\pi(J)$. It is crucial to assume that the mean value of the couplings is zero, otherwise the model displays ferro/antiferro order. We indicate the avergage over the couplings (namely the average over the disorder) with an overline. In this case we have <\math><\center>
\overline{J_{ij}}=0
</math>
Hence the energy associated to a given configuration
with zero average.
The For simplicity we assume <\math>
H= \sum_{ i j } J_{ij} \sigma_i \sigma_j
</math>