L-1: Difference between revisions

From Disordered Systems Wiki
Jump to navigation Jump to search
(Created page with "djdjjnr")
 
No edit summary
Line 1: Line 1:
djdjjnr
= Spin glass Transition =
 
== Experiments ==
 
Parlare dei campioni di rame dopati con il magnesio, marino o no: trovare due figure una  di suscettivita e una di calore specifico, prova della transizione termodinamica.
 
==Edwards Anderson model==
 
We consider an Ising model  with  <math>N </math> spins <math>\sigma_i=\pm 1</math> and i.i.d. coupling <math>J_{ij} </math> drawn from a distribution $\pi(J)$.
It is crucial to assume that the mean value of the couplings is zero, otherwise the model displays ferro/antiferro order.
We indicate the avergage over the couplings (namely the average over the disorder) with an overline. In this case we have
<\math><\center>
\overline{J_{ij}}=0
</math></center>
Hence the energy associated to a given configuration <math> \sigma_i=\pm 1</math>
 
 
  with zero average.
The 
For simplicity we assume 
<\math>
H= \sum_{ i j } J_{ij} \sigma_i \sigma_j
</math></center>
 
== Edwards Anderson order parameter==
 
== The SK model ==
 
== Random energy model ==
=== Derivation===
===

Revision as of 15:02, 12 November 2023

Spin glass Transition

Experiments

Parlare dei campioni di rame dopati con il magnesio, marino o no: trovare due figure una di suscettivita e una di calore specifico, prova della transizione termodinamica.

Edwards Anderson model

We consider an Ising model with spins and i.i.d. coupling drawn from a distribution $\pi(J)$. It is crucial to assume that the mean value of the couplings is zero, otherwise the model displays ferro/antiferro order. We indicate the avergage over the couplings (namely the average over the disorder) with an overline. In this case we have <\math><\center>

\overline{J_{ij}}=0 

</math>

Hence the energy associated to a given configuration


 with zero average.

The For simplicity we assume <\math>

H= \sum_{ i j } J_{ij} \sigma_i \sigma_j

</math>

Edwards Anderson order parameter

The SK model

Random energy model

Derivation

=