L-4: Difference between revisions
Jump to navigation
Jump to search
Line 32: | Line 32: | ||
<center> <math> | <center> <math> | ||
\overline{Z_t[x_1] Z_t[x_2]} = \exp\left[ \frac{D t \delta(0)}{T^2} \right] | \overline{Z_t[x_1] Z_t[x_2]} = \exp\left[ \frac{D t \delta(0)}{T^2} \right] | ||
</math></center>\int {\cal D} x_1\int {\cal D} x_2 \exp\left[- \int_0^t d \tau \frac{1}{2T}[(\partial_\tau x_1)^2+ (\partial_\tau x_2)^2 ]+ \frac{1}{T^2} \delta[x_1(\tau)-x_2(\tau)]\right] | </math></center>\int {\cal D} x_1\int {\cal D} x_2 \exp\left[- \int_0^t d \tau \frac{1}{2T}[(\partial_\tau x_1)^2+ (\partial_\tau x_2)^2 ]+ \frac{1}{T^2} \delta[x_1(\tau)-x_2(\tau)]\right] | ||
</math></center> | </math></center> | ||
=Part 2: Structural glasses= | =Part 2: Structural glasses= |
Revision as of 13:21, 5 January 2024
Goal 1: final lecture on KPZ and directed polymers at finite dimension. We will show that for a "glass transition" takes place.
Goal 2: We will mention some ideas related to glass transition in true glasses.
Part 1: KPZ in finite dimension
- In we found and a glassy regime present at all temperatures. Moreover, the stationary solution tell us that is a Brownian motion in . However this solution does not identify the actual distribution of for a given . In particular we have no idea from where Tracy Widom comes from.
- In the exponents are not known. There is an exact solution for the Caley tree (infinite dimension) that predicts a freezing transition to an 1RSB phase ().
Let's do replica!
To make progress in disordered systems we have to go through the moments of the partition function. We recall that
- is a Gaussian field with
- From the Wick theorem, for a generic Gaussian field we have
The first moment of the partition function is
Note that the term has a short distance divergence due to the delta-functiton. Hence we can write:
Exercise L4-A: the second moment
Show:
\int {\cal D} x_1\int {\cal D} x_2 \exp\left[- \int_0^t d \tau \frac{1}{2T}[(\partial_\tau x_1)^2+ (\partial_\tau x_2)^2 ]+ \frac{1}{T^2} \delta[x_1(\tau)-x_2(\tau)]\right] </math>