L-1: Difference between revisions

From Disordered Systems Wiki
Jump to navigation Jump to search
No edit summary
Line 7: Line 7:
==Edwards Anderson model==
==Edwards Anderson model==


We consider an Ising model  with  <math>N </math> spins <math>\sigma_i=\pm 1</math> and i.i.d. coupling <math>J_{ij} </math> drawn from a distribution $\pi(J)$.
We consider an Ising model  with  <math>N </math> spins <math>\sigma_i=\pm 1</math> and i.i.d. coupling <math>J_{ij} </math> drawn from a distribution <math>\pi(J_{ij})</math>.
It is crucial to assume that the mean value of the couplings is zero, otherwise the model displays ferro/antiferro order.  
It is crucial to assume that the mean value of the couplings is zero, otherwise the model displays ferro/antiferro order.  
We indicate the avergage over the couplings (namely the average over the disorder) with an overline. In this case we have  
We indicate the avergage over the couplings (namely the average over the disorder) with an overline. In this case we have  
<\math><\center>
<math><center>
  \overline{J_{ij}}=0  
  \overline{J_{ij}}=0  
</math></center>
</math></center>
Line 19: Line 19:
The   
The   
For simplicity we assume   
For simplicity we assume   
<\math>
<math><center>
  H= \sum_{ i j } J_{ij} \sigma_i \sigma_j
  H= \sum_{ i j } J_{ij} \sigma_i \sigma_j
</math></center>
</math></center>

Revision as of 15:04, 12 November 2023

Spin glass Transition

Experiments

Parlare dei campioni di rame dopati con il magnesio, marino o no: trovare due figure una di suscettivita e una di calore specifico, prova della transizione termodinamica.

Edwards Anderson model

We consider an Ising model with spins and i.i.d. coupling drawn from a distribution . It is crucial to assume that the mean value of the couplings is zero, otherwise the model displays ferro/antiferro order. We indicate the avergage over the couplings (namely the average over the disorder) with an overline. In this case we have

Hence the energy associated to a given configuration


 with zero average.

The For simplicity we assume

Edwards Anderson order parameter

The SK model

Random energy model

Derivation

=