L-1: Difference between revisions

From Disordered Systems Wiki
Jump to navigation Jump to search
Line 14: Line 14:
  E= \sum_{ <i, j> } J_{ij} \sigma_i \sigma_j
  E= \sum_{ <i, j> } J_{ij} \sigma_i \sigma_j
</math></center>
</math></center>
The key point of the model proposed by Edwards and Anderson is that the couplings  
The key point of the model proposed by Edwards and Anderson is that the couplings <math>J_{ij} </math> are i.i.d. random variables with '''zero mean'''.
and i.i.d. coupling <math>J_{ij} </math> drawn from a distribution <math>\pi(J_{ij})</math>.
We set <math>\pi(J_{ij})</math> the coupling distribution indicate the avergage over the couplings called disorder average, with an overline:  
 
It is crucial to assume that the mean value of the couplings is zero, otherwise the model displays ferro/antiferro order.
We indicate the avergage over the couplings called disorder average, with an overline:  
<center><math>
<center><math>
  \bar{J_{ij}} \equiv \int d J_{ij} \, J_{ij} \pi(J_{ij})=0  
  \bar{J_{ij}} \equiv \int d J_{ij} \, J_{ij} \pi(J_{ij})=0  
</math></center>
</math></center>
 
It is crucial to assume <math>
The 
  \bar{J_{ij}}=0 </math>, otherwise the model displays ferro/antiferro order.
For simplicity we assume
<center> <math>
  H= \sum_{ i j } J_{ij} \sigma_i \sigma_j
</math></center>


== Edwards Anderson order parameter==
== Edwards Anderson order parameter==

Revision as of 15:45, 12 November 2023

Spin glass Transition

Experiments

Parlare dei campioni di rame dopati con il magnesio, marino o no: trovare due figure una di suscettivita e una di calore specifico, prova della transizione termodinamica.

Edwards Anderson model

We consider for simplicity the Ising version of this model.

Ising spins takes two values and live on a lattice of sitees . The enregy is writteen as a sum between the nearest neighbours <i,j>:

The key point of the model proposed by Edwards and Anderson is that the couplings are i.i.d. random variables with zero mean. We set the coupling distribution indicate the avergage over the couplings called disorder average, with an overline:

It is crucial to assume , otherwise the model displays ferro/antiferro order.

Edwards Anderson order parameter

The SK model

Random energy model

Derivation

Bibliography

Bibliography

  • Theory of spin glasses, S. F. Edwards and P. W. Anderson, J. Phys. F: Met. Phys. 5 965, 1975

=