L-6: Difference between revisions

From Disordered Systems Wiki
Jump to navigation Jump to search
Line 78: Line 78:
Hence, for large systems we have
Hence, for large systems we have
<center><math> x_1 \sim \frac{1}{L P_w(0)},  \; x_2 \sim \frac{2}{L P_w(0)}, \; x_3 \sim \frac{3}{L P_w(0)}, \ldots  </math></center>
<center><math> x_1 \sim \frac{1}{L P_w(0)},  \; x_2 \sim \frac{2}{L P_w(0)}, \; x_3 \sim \frac{3}{L P_w(0)}, \ldots  </math></center>
We expect three possibilities:
* if the mean kick, <math>\sim \overline{\Delta}/(1+m^2) </math> is smaller than the mean gap <math>\sim 1 /P_w(0)</math>, the system is subcritical and avalanches quickly  stops.
* if the mean kick, <math>\sim \overline{\Delta}/(1+m^2) </math> is equal to the mean gap <math>\sim 1 /P_w(0)</math>, the system is critical and avalanches are power law distributed
* if the mean kick, <math>\sim \overline{\Delta}/(1+m^2) </math> is larger of the mean gap <math>\sim 1 /P_w(0)</math>, the system is super-critical and avalanches are unstable.
Noe that in the stationary regime the system is  subcritical when  <math>m>0 </math> and critical for <math>m=0 </math>
====Mapping to the Brownian motion====
Let's define the random jumps  and the associated random walk
<center><math>  \eta_1 = \frac{\Delta_1}{(1+m^2)L}- x_1, \;  \eta_2=\frac{\Delta_2}{(1+m^2)L}- (x_2-x_1) \; \eta_3=\frac{\Delta_3}{(1+m^2)L}- (x_3-x_2)  \ldots  \\
X_t= \sum_{i=1}^t \eta_i \; \test{with} \; \langle \eta_i\rangle =  \left(\frac{\overline{\Delta}}{(1+m^2)} -\frac{1}{P_w(0)}\right)/L
  </math></center>

Revision as of 19:58, 2 March 2024

Avalanches and Bienaymé-Galton-Watson process

Goal: We solve the mean field version of the cellular automaton, derive its avalanche statistics and make a connection with the Bienaymé-Galton-Watson process used to describe an epidemic outbreak.

Fully connected (mean field) model for the cellular automaton

Let's study the mean field version of the cellular automata introduced in the previous lecture. We introduce two approximations:

  • Replace the Laplacian, which is short range, with a mean field fully connected interction

.


  • The local threshold are all equal. In particular we set

.


As a consequence, in the limit , the statistical properties of the system are described by the distribution of the local stresses . For simplicity, instead of the stresses, we study the distance from threshold

Our goal is thus to determine their distribution , given their intial distribution, , and a value of .

Dynamics

Let's rewrite the dynamics with the new variables

  • Drive: Increasing each point decreases its distance to threshold

.

As a consequence


  • Instability 1: Stress drop The instability occurs when a point is at . Then, the point is stabilized (stress drop):

Increasing , a fraction of the blocks is unstable. Due to the stress drop, their distance to threshold becomes . Hence, one writes


  • Instability 2: Stress redistribution The stress drop of a single block induces a stress redistribution where all blocks approach threshold.

The total stress drop is hence all points move to the origin of

part of them shifts, part of them become unstable... we can write

and finally:

Stationary solution

Increasing the drive the distribution converge to the fixed point:

  • Determne using
  • Show

which is well normalized.

Critical Force

The average distance from the threshold gives a simple relation for the critical force, namely . Hence for the automata model we obtain:

Exercise:

Let's assume an exponential distribution of the thresholds and show

Avalanches or instability?

Given the initial condition and , the state of the system is described by . For each unstable block, all the blocks receive a kick. The mean value of the kick is

Is this kick able to destabilize another block? The equation setting the average position of the most unstable block is

Hence, for large systems we have

We expect three possibilities:

  • if the mean kick, is smaller than the mean gap , the system is subcritical and avalanches quickly stops.
  • if the mean kick, is equal to the mean gap , the system is critical and avalanches are power law distributed
  • if the mean kick, is larger of the mean gap , the system is super-critical and avalanches are unstable.

Noe that in the stationary regime the system is subcritical when and critical for

Mapping to the Brownian motion

Let's define the random jumps and the associated random walk

Failed to parse (syntax error): {\displaystyle \eta_1 = \frac{\Delta_1}{(1+m^2)L}- x_1, \; \eta_2=\frac{\Delta_2}{(1+m^2)L}- (x_2-x_1) \; \eta_3=\frac{\Delta_3}{(1+m^2)L}- (x_3-x_2) \ldots \\ X_t= \sum_{i=1}^t \eta_i \; \test{with} \; \langle \eta_i\rangle = \left(\frac{\overline{\Delta}}{(1+m^2)} -\frac{1}{P_w(0)}\right)/L }