T-9: Difference between revisions
Line 62: | Line 62: | ||
== Check out: key concepts of this TD == | == Check out: key concepts of this TD == | ||
stability analysis, critical disorder, mobility edge. | |||
== References == | == References == | ||
* Abou-Chacra, Thouless, Anderson. A selfconsistent theory of localization. Journal of Physics C: Solid State Physics 6.10 (1973) | * Abou-Chacra, Thouless, Anderson. A selfconsistent theory of localization. Journal of Physics C: Solid State Physics 6.10 (1973) |
Revision as of 17:39, 13 March 2024
Goal: the goal of this problem is to determine when the solution of the distributional equations corresponding to localization is unstable, providing an estimate of thee mobility edge on the Bethe lattice.
Techniques: stability analysis, Laplace transforms.
Problems
In this Problem we will determine for which values of parameters localization is stable, estimating the critical value of disorder where the transition to a delocalised phase occurs. Recall the results of Problem 8: the real and imaginary parts of the local self energy satisfy the self-consistent equations:
These equations admit the solution , which corresponds to localization. We now determine when this solution becomes unstable.
Problem 9: an estimate of the mobility edge
- Imaginary approximation and distributional equation. We consider the equations for and neglect the terms in the denominators, which couple the equations to those for the real parts of the self energies (“imaginary” approximation). Moreover, we assume to be in the localized phase, where . Finally, we set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{ab} \equiv V }
and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E=0 }
for simplicity. Show that under these assumptions the probability density for the imaginary part, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_\Gamma(\Gamma)}
, satisfies
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_\Gamma(\Gamma)= \int \prod_{b=1}^k d\epsilon_b\,p(\epsilon_b)\int \prod_{b=1}^k d\Gamma_b \, P_\Gamma(\Gamma_b) \delta \left(\Gamma - V^2 \sum_{b \in \partial a} \frac{\Gamma_b + \eta}{ \epsilon_b^2} \right) }
Show that the Laplace transform of this distribution, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi(s)=\int_0^\infty d\Gamma e^{-s \Gamma} P_\Gamma(\Gamma) } , satisfies
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi(s)= \left[ \int d\epsilon\, p(\epsilon) e^{-\frac{s V^2 \eta}{\epsilon^2}} \Phi \left(\frac{s V^2 }{\epsilon^2} \right) \right]^k }
- The stability analysis. We now wish to check the stability of our assumption to be in the localized phase, , which led to the identity above for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi(s) }
. Our assumption is that the typical value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_a }
is small, except for cases in which one of the descendants is such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_b }
is very small, in which case Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_a \sim 1/ \epsilon_b^2 \gg 1 }
.
- Show that if and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(\epsilon)} is not gapped around zero, then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_\Gamma(\Gamma) \sim \Gamma^{-3/2}} , i.e. the distribution has tails contributed by these events in which the local random potential happen to be very small.
- Assume more generally that for large Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha \in [1, 3/2]} . Show that this corresponds to for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s } small, with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta= \alpha-1 \in [0, 1/2] } .
- Show that the equation for gives for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s }
small Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1- A s^\beta =1- A k \int d\epsilon \, p(\epsilon) \frac{s^\beta V^{2 \beta}}{\epsilon^{2 \beta}}+ o(s^\beta) }
, and therefore this is consistent provided that there exists a solving
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1=k \int d\epsilon \, p(\epsilon) \left(\frac{V}{\epsilon}\right)^{2 \beta} \equiv k I(\beta). }
- The critical disorder. Consider now local fields Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon }
taken from a uniform distribution in . Compute Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I(\beta) }
and show that it is non monotonic, with a local minimum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta^* }
in the interval . Show that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I(\beta^*) }
increases as the disorder is made weaker and weaker, and thus the transition to delocalisation occurs at the critical value of disorder when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I(\beta^*)=k^{-1} }
. Show that this gives the following estimate for the critical disorder at which the transition to delocalisation occurs:
Why the critical disorder increases with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k } ?
Check out: key concepts of this TD
stability analysis, critical disorder, mobility edge.
References
- Abou-Chacra, Thouless, Anderson. A selfconsistent theory of localization. Journal of Physics C: Solid State Physics 6.10 (1973)