T-II-3: Difference between revisions
Line 14: | Line 14: | ||
</math> | </math> | ||
</center> | </center> | ||
This quantity is a measure of <em>ergodicity breaking</em>: when ergodicity is broken, the system at equilibrium explores only a sub-part of the phase space; the Boltzmann measure clusters into <em>pure states</em> (labelled by <math>\alpha </math>) with Gibbs weight <math>\omega_\alpha </math>, meaning that one can re-write the thermal averages <math>\langle \cdot \rangle </math> of any observable <math>A </math> as | This quantity is a measure of <em>ergodicity breaking</em>: when ergodicity is broken, the system at equilibrium explores only a sub-part of the phase space; the Boltzmann measure clusters into <em>pure states</em> (labelled by <math>\alpha </math>) with Gibbs weight <math>\omega_\alpha </math>, meaning that one can re-write the thermal averages <math>\langle \cdot \rangle </math> of any observable <math>A </math> as | ||
<center> | <center> | ||
<math> | <math> |
Revision as of 11:52, 22 December 2023
Goal of these problems:
In this set of problems, we compute the free energy of the spherical -spin model in the Replica Symmetric (RS) framework, and in the 1-step Replica Symmetry Broken (1-RSB) framework.
Key concepts:
The order parameters: overlaps, and their meaning
In the lectures, we have introduced the Edwards-Anderson order parameter
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_{EA}=\frac{1}{N}\sum_i \overline{\langle \sigma_i \rangle^2} }
This quantity is a measure of ergodicity breaking: when ergodicity is broken, the system at equilibrium explores only a sub-part of the phase space; the Boltzmann measure clusters into pure states (labelled by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha } ) with Gibbs weight , meaning that one can re-write the thermal averages Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \cdot \rangle } of any observable Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A } as
In the Ising model at low temperature there are two pure states, that correspond to positive and negative magnetization. In a mean-field spin glass, there are more than two pure states. The quantity Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_{EA}} measures the overlap between configurations belonging to the same pure state, that one expects to be the same for all states:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_{EA}= q_{\alpha \alpha}= \frac{1}{N}\sum_i \langle \sigma_i \rangle_\alpha \langle \sigma_i \rangle_\alpha. }
This non-zero in a spin-glass phase, but it is also different from zero in unfrustrated ferromagnets: in the low-T phase of an Ising model, it equals to , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} is the magnetization. One can generalize this and consider also the overlap between configurations in different pure states, and the overlap distribution:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_{\alpha \beta}= \frac{1}{N}\sum_i \langle \sigma_i \rangle_\alpha \langle \sigma_i \rangle_\beta, \quad \quad \quad {P}(q)= \sum_{\alpha, \beta} \frac{Z_\alpha}{Z}\, \frac{Z_\beta}{Z}\, \delta(q- q_{\alpha \beta}) }
The disorder average of quantities can be computed within the replica formalism, and one finds:
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{ab}^{SP}} are the saddle point values of the overlap matrix introduced in Problem 2.2.
The solution of the saddle point equations for the overlap matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q} thus encodes a lot of information on the system; in particular, they contain the information on whether spin glass order emerges:
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{P}(q)} is the probability that two copies of the system, equilibrating in the same disordered environment, end up having overlap q with each others. A non-trivial distribution is an indicator of ergodicity breaking in the systems: it indicates that the Boltzmann measure is partitioned into several pure states (like the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle +m} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -m} states in the Ising case, where is the magnetization), and it measures the typical overlaps between configurations belonging to the same, or different states. In Ising, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{P}(q)= \delta(q-m^2)} .
Problem 3.1: the RS (Replica Symmetric) calculation
Let us consider the simplest possible ansatz for the structure of the matrix Q, that is the Replica Symmetric (RS) ansatz:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q=\begin{pmatrix} 1 & q_0 &q_0 \cdots& q_0\\ q_0 & 1 &q_0 \cdots &q_0\\ &\cdots& &\\ q_0 & q_0 &q_0 \cdots &1 \end{pmatrix} }
Under this assumption, there is a unique saddle point variable, that is .
-
Check that the inverse of the overlap matrix is
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q^{-1}=\begin{pmatrix} \alpha & \beta &\beta \cdots& \beta\\ \beta & \alpha &\beta \cdots &\beta\\ &\cdots& &\\ \beta & \beta &\beta \cdots &\alpha \end{pmatrix} \quad \quad \text{with} \quad \alpha= \frac{1}{1-q_0} \quad \text{and} \quad \beta=\frac{-1}{(1-q_0)[1+(n-1)q_0]} }
Compute the saddle point equation for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0} in the limit , and show that this equation admits always the solution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0= 0} : why is this called the paramagnetic solution?
- Compute the free energy corresponding to the solution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0= 0} , and show that it reproduces the annealed free energy. Do you have an interpretation for this?
- Overlpa interpretation
Problem 3.2: the 1-RSB (Replica Symmetry Broken) calculation
In the previous problem, we have chosen a certain parametrization of the overlap matrix , which corresponds to assuming that typically all the copies of the systems fall into configurations that are at overlap Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0} with each others, no matter what is the pair of replicas considered. This assumption is however not the good one at low temperature. We now assume a different parametrisation, that corresponds to breaking the symmetry between replicas: in particular, we assume that typically the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} replicas fall into configurations that are organized in groups of size Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} ; pairs of replicas in the same group are more strongly correlated and have overlap Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_1} , while pairs of replicas belonging to different groups have a smaller overlap . This corresponds to the following block structure for the overlap matrix:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q=\begin{pmatrix} 1 & q_1 &q_1& q_0 & q_0 \cdots& q_0\\ q_1 & 1 &q_1& q_0 & q_0 \cdots& q_0\\ q_1 & q_1 &1& q_0 & q_0 \cdots& q_0\\ \cdots\\ \cdots\\ \cdots\\ q_0 & q_0 \cdots& q_0&1 & q_1 &q_1\\ q_0 & q_0 \cdots& q_0&q_1 & 1 &q_1\\ q_0 & q_0 \cdots& q_0&q_1 & q_1 &1\\ \end{pmatrix} }
Here we have three parameters: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m, q_0, q_1} (in the formula above, ).
-
Using that
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log \det Q=n\frac{m-1}{m} \log (1-q_1)+ \frac{n-m}{m} \log [m(q_1-q_0) + 1-q_1]+ \log \left[nq_0+ m(q_1-q_0)+ 1-q_1 \right]}
show that the free energy now becomes:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_{1RSB}= - \frac{1}{2 \beta} \left[ \frac{\beta^2}{2} \left(1+ (m-1)q_1^p - m q_0^p \right)+ \frac{m-1}{m} \log (1-q_1)+ \frac{1}{m} \log [m(q_1-q_0) + 1-q_1]+ \frac{q_0}{m(q_1-q_0)+ 1-q_1} \right] }
Under which limit this reduces to the replica symmetric expression?
-
Compute the saddle point equations with respect to the parameter and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m }
are. Check that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0=0}
is again a valid solution of these equations, and that for the remaining equations reduce to:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (m-1) \left[ \frac{\beta^2}{q}p q_1^{p-1}-\frac{1}{m}\frac{1}{1-q_1}+ \frac{1}{m}\frac{1}{1+ (m-1)q_1} \right]=0, \quad \quad \frac{\beta^2}{2} q_1^p + \frac{1}{m^2}\log \left( \frac{1-q_1}{1+ (m-1)q_1}\right)+ \frac{q_1}{m [1+(m-1)q_1]}=0 }
How does one recover the paramagnetic solution?
-
We now look for a solution different from the paramagnetic one. To begin with, we set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m=1 }
to satisfy the first equation, and look for a solution of
Plot this function for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p=3} and different values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta} , and show that there is a critical temperature Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_c} where a solution appears: what is the value of this temperature (determined numerically)?