L-1: Difference between revisions

From Disordered Systems Wiki
Jump to navigation Jump to search
Line 118: Line 118:
Taking the average, we see that
Taking the average, we see that
<center><math>
<center><math>
\overline{Z} = \int dE \, \overline{\mathcal{N}(E)} e^{-\beta E}= \int d\epsilon \, e^{N \left[\Sigma(\epsilon)- \beta \epsilon \right]+ o(N)}
\overline{Z} = \int dE \, \overline{\mathcal{N}(E)} e^{-\beta E}= \int_{- \sqrt{\log 2}}^{\sqrt{\log 2}} d\epsilon \, e^{N \left[\Sigma(\epsilon)- \beta \epsilon \right]+ o(N)}
</math></center>  
</math></center>  
In the limit of large  <math>N </math>, this integral can be computed with the saddle point method, and one gets
In the limit of large  <math>N </math>, this integral can be computed with the saddle point method, and one gets
Line 124: Line 124:
\overline{Z} = e^{N \left[\Sigma(\epsilon^*)- \beta \epsilon^* \right]+ o(N)}, \quad \quad \epsilon^*= \text{argmax}_{|\epsilon| \leq \sqrt{\log 2}} \left(\Sigma(\epsilon)- \beta \epsilon \right)
\overline{Z} = e^{N \left[\Sigma(\epsilon^*)- \beta \epsilon^* \right]+ o(N)}, \quad \quad \epsilon^*= \text{argmax}_{|\epsilon| \leq \sqrt{\log 2}} \left(\Sigma(\epsilon)- \beta \epsilon \right)
</math></center>
</math></center>
Using the expression of the entropy, we see that
Using the expression of the entropy, we see that the function is stationary at  <math>\epsilon^*= -1/2T </math>, which belongs to the domain of integration whenever <math>T \geq T_c= 1/(2 \sqrt{\log 2}) </math>. This temperature identifies a transition point: for all values of <math>T < T_c </math>, the stationary point is outside the domain and thus <math>\epsilon^*</math> has to be chosen at the boundary of the domain, <math>\epsilon^*= -\sqrt{\log 2}</math>.


==Bibliography==
==Bibliography==

Revision as of 17:03, 22 November 2023

Spin glass Transition

Experiments

Parlare dei campioni di rame dopati con il magnesio, marino o no: trovare due figure una di suscettivita e una di calore specifico, prova della transizione termodinamica.

Edwards Anderson model

We consider for simplicity the Ising version of this model.

Ising spins takes two values and live on a lattice of sitees . The enregy is writteen as a sum between the nearest neighbours <i,j>:

Edwards and Anderson proposed to study this model for couplings that are i.i.d. random variables with zero mean. We set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi(J)} the coupling distribution indicate the avergage over the couplings called disorder average, with an overline:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bar{J} \equiv \int d J \, J \, \pi(J)=0 }

It is crucial to assume , otherwise the model displays ferro/antiferro order. We sill discuss two distributions:

  • Gaussian couplings: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi(J) =\exp\left(-J^2/2\right)/\sqrt{2 \pi}}
  • Coin toss couplings, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J= \pm 1 } , selected with probability Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1/2 } .

Edwards Anderson order parameter

The SK model

Sherrington and Kirkpatrik considered the fully connected version of the model with Gaussian couplings:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E= - \sum_{i,j} \frac{J_{ij}}{2 \sqrt{N}} \sigma_i \sigma_j }

At the inverse temperature , the partion function of the model is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z= \sum_{\alpha=1}^{2^N} z_{\alpha}, \quad \text{with}\; z_{\alpha}= e^{-\beta E_\alpha} }

Here Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_\alpha } is the energy associated to the configuration Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha } . This model presents a thermodynamic transition at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta_c=?? } .

Random energy model

The solution of the SK is difficult. To make progress we first study the radnom energy model (REM) introduced by B. Derrida.

Derivation of the model

The REM neglects the correlations between the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^N } configurations and assumes the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{\alpha} } as iid variables.

  • Show that the energy distribution is
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(E_\alpha) =\frac{1}{\sqrt{2 \pi \sigma^2}}e^{-\frac{E_{\alpha}^2}{2 \sigma^2}}}

and determine Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma^2}

The Solution: Part 1

We provide different solutions of the Random Energy Model (REM). The first one focus on the statistics of the smallest energies among the ones associated to the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M=2^N} configurations.

Consider the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M=2^N} energies: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (E_1,...,E_M)} . They are i.i.d. variables, drawn from the Gaussian distribution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(E)} . It is useful to use the following notations:

  • for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \to -\infty} . It represents the probability to find an energy smaller than E.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P^>(E)=\int_E^{+\infty} dx p(x) = 1- P^<(E) } . It represents the probability to dfind an energy larger than E.


Extreme value statistics for iid

We denote

Our goal is to compute the cumulative distribution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_M(\epsilon)\equiv\text{Prob}(E_{\min}> \epsilon)} for large M and iid variables.

We need to understand two key relations:

  • The first relation is exact:
  • The second relation identifies the typical value of the minimum, namely Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_M } :
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P^<(a_M) = \frac1 M }

.

Close to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_M } , we expect Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P^<(\epsilon) \approx 1/M } . Hence, from the limit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{M\to \infty} (1-\frac{k}{M})^M =\exp(-k)} we re-write the first relation:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_M(\epsilon) \sim \exp\left(-M P^<(\epsilon)\right)}

Moreover, if we define we recover the famous Gumbel distribution:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_M(\epsilon) \sim \exp\left(-e^{- A'(a_M) (\epsilon-a_M)}\right) }
Exercise L1-A: the Gaussian case

Specify these results to the Guassian case and find

  • the typical value of the minimum

%

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_M = \sigma \sqrt{2 \log M}-\frac{1}{2}\sqrt{\log(\log M)} +O(1) }
  • The expression
  • The expression of the Gumbel distribution for the Gaussian case
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_M(\epsilon) \sim \exp\left(-e^{- \frac{\sqrt{2 \log M}}{\sigma} (\epsilon-a_M)}\right) }

Density of states above the minimum

For a given disorder realization, we compute Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d(x) } , the number of configurations above the minimum, but with an energy smaller than .

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Prob}(d(x) = k) = M \binom{M-1}{k}\int dE \; p(E) [P^>(E) - P^>(E+x) ]^{k} P^>(E+x)^{M - k - 1} }

Taking the average Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{d(x)} = \sum_k k \text{Prob}(d(x) = k) } , we derive

Number

The landscape

To characterize the energy landscape of the REM, we can determine the number Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{N}(E)dE } of configurations having energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_\alpha \in [E, E+dE] } . The average of this number is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\mathcal{N}(E)} = e^{N \Sigma\left( \frac{E}{N}\right) + o(N)}, \quad \quad \Sigma(\epsilon) = \log 2- \epsilon^2,}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Sigma(\epsilon) } is the entropy of the model. A sketch of this function is in Fig. X. The point where the entropy vanishes, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon=- \sqrt{\log 2} } , is the energy density of the ground state, consistently with what we obtained with extreme values statistics. The entropy is maximal at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon=0 } : the highest number of configurations have vanishing energy density.

  • To derive the expression for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\mathcal{N}(E)} } , we can write , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi_\alpha(E)=1} if and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi_\alpha(E)=0} otherwise. Use this together with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(E)} to obtain the entropy of the model.
  • Why the point where the entropy vanishes is the ground state of the model? For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\epsilon| > \sqrt{\log 2} } the entropy is negative. This means that configurations with those energy are exponentially rare: the probability to find one is exponentially small in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N } . Do you have an idea of how to show this, using the expression for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\mathcal{N}(E)}} ?
  • For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\epsilon| \leq \sqrt{\log 2} } the quantity Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{N}(E) } is self-averaging, meaning that its distribution concentrates around the average value Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\mathcal{N}}(E) } when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N \to \infty } . Show that this is the case by computing the second moment Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\mathcal{N}^2(E)}dE } and using the central limit theorem. Notice that this is no longer true in the region where the entropy is negative: this will be responsible of the fact that the partition function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z } is not self-averaging in the low-T phase, as we discuss below.

The partition function and the freezing transition

Let us compute the free energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f } of the REM. The partition function reads

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z = \sum_{\alpha=1}^{2^N} e^{-\beta E_\alpha}= \int dE \, \mathcal{N}(E) e^{-\beta E} }

Taking the average, we see that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{Z} = \int dE \, \overline{\mathcal{N}(E)} e^{-\beta E}= \int_{- \sqrt{\log 2}}^{\sqrt{\log 2}} d\epsilon \, e^{N \left[\Sigma(\epsilon)- \beta \epsilon \right]+ o(N)} }

In the limit of large Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N } , this integral can be computed with the saddle point method, and one gets

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{Z} = e^{N \left[\Sigma(\epsilon^*)- \beta \epsilon^* \right]+ o(N)}, \quad \quad \epsilon^*= \text{argmax}_{|\epsilon| \leq \sqrt{\log 2}} \left(\Sigma(\epsilon)- \beta \epsilon \right) }

Using the expression of the entropy, we see that the function is stationary at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon^*= -1/2T } , which belongs to the domain of integration whenever Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T \geq T_c= 1/(2 \sqrt{\log 2}) } . This temperature identifies a transition point: for all values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T < T_c } , the stationary point is outside the domain and thus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon^*} has to be chosen at the boundary of the domain, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon^*= -\sqrt{\log 2}} .

Bibliography

Bibliography

  • Theory of spin glasses, S. F. Edwards and P. W. Anderson, J. Phys. F: Met. Phys. 5 965, 1975