T-3: Difference between revisions
Line 12: | Line 12: | ||
<ul> | <ul> | ||
<li> In the lectures, we have introduced the <ins | <li> In the lectures, we have introduced the <ins>Edwards-Anderson order parameter</ins>: | ||
<center> | <center> | ||
<math> | <math> |
Revision as of 19:02, 4 January 2024
Goal:
In this set of problems, we compute the free energy of the spherical Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p}
-spin model in the Replica Symmetric (RS) framework, and in the 1-step Replica Symmetry Broken (1-RSB) framework.
Key concepts: order parameters, ergodicity breaking, pure states, overlap distribution, replica-symmetric ansatz, replica symmetry breaking.
The order parameters: overlaps, and their meaning
- In the lectures, we have introduced the Edwards-Anderson order parameter:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_{EA}= \lim_{N \to \infty}\frac{1}{N}\sum_i \overline{\langle \sigma_i \rangle^2} }
which plays the same role as the magnetization in a ferromagnet. Let us recap what happens for a ferromagnet. The magnetization is defined as:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m=\lim_{h \to 0} \lim_{N \to \infty}\frac{1}{N}\sum_{i=1}^N \overline{\langle \sigma_i \rangle_{ h}} }
- Pure states. When ergodicity is broken, the Boltzmann measure clusters into pure states (labelled by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha }
) with Gibbs weight Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega_\alpha }
, meaning that one can re-write the thermal averages Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \cdot \rangle }
of any observable Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A }
as
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle A \rangle = \sum_{\alpha} \omega_\alpha \langle A \rangle_\alpha, \quad \quad \quad \omega_\alpha= \frac{Z_\alpha}{Z}, \quad \quad \quad Z_\alpha=\int_{\vec{\sigma} \in \text{ state } \alpha} d \vec{\sigma} e^{-\beta E[\vec{\sigma}]}= \langle e^{-\beta E [\vec{\sigma}]} \rangle_\alpha }
In the ferromagnet there are two pure states, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha= \pm 1 } , that correspond to positive and negative magnetization. In a mean-field spin glass, there are more than two pure states. The quantity Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_{EA}} measures the overlap between configurations belonging to the same pure state, that one expects to be the same for all states:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_{EA}= q_{\alpha \alpha}= \lim_{N \to \infty}\frac{1}{N}\sum_i \langle \sigma_i \rangle_\alpha \langle \sigma_i \rangle_\alpha }
Notice that to be precise, we should write
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_{EA}=\lim_{\epsilon \to 0}\lim_{N \to \infty}\frac{1}{N}\sum_i \langle \sigma_i^1 \, \sigma_i^2 \rangle_\epsilon, }
- Overlap distribution. One can generalize this and consider also the overlap between configurations in different pure states, and the overlap distribution:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_{\alpha \beta}= \frac{1}{N}\sum_i \langle \sigma_i \rangle_\alpha \langle \sigma_i \rangle_\beta, \quad \quad \quad {P}(q)= \sum_{\alpha, \beta} \omega_\alpha\, \omega_\beta\, \delta(q- q_{\alpha \beta}). }
The disorder average of quantities can be computed within the replica formalism, and one finds:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{P}(q)=\lim_{n \to 0} \frac{2}{n(n-1)}\sum_{a>b}\delta \left(q- Q_{ab}^{SP}\right),\quad \quad \quad q_{EA}= \max \left\{ Q_{a \neq b}^{SP} \right\} }
Problem 3.1: the RS (Replica Symmetric) calculation
We go back to the saddle point equations for the spherical Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} -spin model derived in the previous problems. Let us consider the simplest possible ansatz for the structure of the matrix Q, that is the Replica Symmetric (RS) ansatz:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q=\begin{pmatrix} 1 & q_0 &q_0 \cdots& q_0\\ q_0 & 1 &q_0 \cdots &q_0\\ &\cdots& &\\ q_0 & q_0 &q_0 \cdots &1 \end{pmatrix} }
Under this assumption, there is a unique saddle point variable, that is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0} . We denote with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0^{SP}} its value at the saddle point.
- Under this assumption, what is the overlap distribution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{P}(q)} and what is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_{EA}} ? In which sense the RS ansatz corresponds to assuming the existence of a unique pure state?
-
Check that the inverse of the overlap matrix is
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q^{-1}=\begin{pmatrix} \alpha & \beta &\beta \cdots& \beta\\ \beta & \alpha &\beta \cdots &\beta\\ &\cdots& &\\ \beta & \beta &\beta \cdots &\alpha \end{pmatrix} \quad \quad \text{with} \quad \alpha= \frac{1+ (n-2)q_0}{1+ (n-2)q_0- (n-1)q_0^2} \quad \text{and} \quad \beta=\frac{-q_0}{1+ (n-2)q_0- (n-1)q_0^2} }
Compute the saddle point equation for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0} in the limit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \to 0} , and show that this equation admits always the solution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0= 0} : why is this called the paramagnetic solution?
- Compute the free energy corresponding to the solution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0= 0} , and show that it reproduces the annealed free energy. Do you have an interpretation for this?
Problem 3.2: the 1-RSB (Replica Symmetry Broken) calculation
In the previous problem, we have chosen a certain parametrization of the overlap matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q} , which corresponds to assuming that typically all the copies of the systems fall into configurations that are at overlap Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0} with each others, no matter what is the pair of replicas considered. This assumption is however not the good one at low temperature. We now assume a different parametrisation, that corresponds to breaking the symmetry between replicas: in particular, we assume that typically the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} replicas fall into configurations that are organized in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n/m} groups of size Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} ; pairs of replicas in the same group are more strongly correlated and have overlap Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_1} , while pairs of replicas belonging to different groups have a smaller overlap Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0<q_1} . This corresponds to the following block structure for the overlap matrix:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q=\begin{pmatrix} 1 & q_1 &q_1& q_0 & q_0 \cdots& q_0\\ q_1 & 1 &q_1& q_0 & q_0 \cdots& q_0\\ q_1 & q_1 &1& q_0 & q_0 \cdots& q_0\\ \cdots\\ \cdots\\ \cdots\\ q_0 & q_0 \cdots& q_0&1 & q_1 &q_1\\ q_0 & q_0 \cdots& q_0&q_1 & 1 &q_1\\ q_0 & q_0 \cdots& q_0&q_1 & q_1 &1\\ \end{pmatrix} }
Here we have three parameters: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m, q_0, q_1} (in the sketch above, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m=3} ). We denote with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m^{SP}, q_0^{SP}, q_1^{SP}} their values at the saddle point.
- Show that in this case the overlap distribution is
What is ? In which sense the parameter can be interpreted as a probability weight?
-
Using that
show that the free energy now becomes:
Under which limit this reduces to the replica symmetric expression?
-
Compute the saddle point equations with respect to the parameter and are. Check that is again a valid solution of these equations, and that for the remaining equations reduce to:
How does one recover the paramagnetic solution?
-
We now look for a solution different from the paramagnetic one. To begin with, we set to satisfy the first equation, and look for a solution of
Plot this function for and different values of , and show that there is a critical temperature where a solution appears: what is the value of this temperature (determined numerically)?