L-4: Difference between revisions

From Disordered Systems Wiki
Jump to navigation Jump to search
Line 32: Line 32:
* Step 1:
* Step 1:
<center> <math>
<center> <math>
\overline{Z[x_t,t]^2 } = \exp\left[ \frac{D  t \delta_0}{T^2}  \right]\int {\cal D} x_1\int  {\cal D} x_2 \exp\left[-  \int_0^t d \tau  \frac{1}{2T}[(\partial_\tau x_1)^2+ (\partial_\tau x_2)^2 ]+ \frac{D}{T^2} \delta^d[x_1(\tau)-x_2(\tau)]\right]
\overline{Z[x_t,t]^2 } = \exp\left[ \frac{D  t \delta_0}{T^2}  \right]\int {\cal D} x_1\int  {\cal D} x_2 \exp\left[-  \int_0^t d \tau  \frac{1}{2T}[(\partial_\tau x_1)^2- (\partial_\tau x_2)^2 ]+ \frac{D}{T^2} \delta^d[x_1(\tau)-x_2(\tau)]\right]
</math></center>
</math></center>
Now you can change coordinate <math>X=(x_1+x_2)/2; \; u=x_1-x_2</math> and get:
Now you can change coordinate <math>X=(x_1+x_2)/2; \; u=x_1-x_2</math> and get:
<center> <math>
<center> <math>
\overline{Z[x_t,t]^2} = (\overline{Z[x_t,t]})^2 \frac{\int_{u(0)=0}^{u(t)=0} {\cal D} u  \exp\left[-  \int_0^t d \tau  \frac{1}{4T}(\partial_\tau u)^2+ \frac{D}{T^2} \delta^d[u(\tau)]\right]}{\int_{u(0)=0}^{u(t)=0} {\cal D} u  \exp\left[-  \int_0^t d \tau  \frac{1}{4T}(\partial_\tau u)^2\right]}
\overline{Z[x_t,t]^2} = (\overline{Z[x_t,t]})^2 \frac{\int_{u(0)=0}^{u(t)=0} {\cal D} u  \exp\left[-  \int_0^t d \tau  \frac{1}{4T}(\partial_\tau u)^2- \frac{D}{T^2} \delta^d[u(\tau)]\right]}{\int_{u(0)=0}^{u(t)=0} {\cal D} u  \exp\left[-  \int_0^t d \tau  \frac{1}{4T}(\partial_\tau u)^2\right]}
</math></center>
</math></center>
* Step 2: Hence, the quantity <math>
* Step 2: Hence, the quantity <math>

Revision as of 13:44, 11 February 2024

Goal : final lecture on KPZ and directed polymers at finite dimension. We will show that for a "glass transition" takes place.


KPZ : from to the Cayley tree

We know a lot about KPZ, but still we have much to understand:

  • In we found and a glassy regime present at all temperatures. Moreover, the stationary solution tell us that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{\min}[x]} is a Brownian motion in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} . However this solution does not identify the actual distribution of for a given Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} . In particular we have no idea from where Tracy Widom comes from.
  • In Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d>1} the exponents are not known. There is an exact solution for the Cayley tree (infinite dimension) that predicts a freezing transition to an 1RSB phase ().

Let's do replica!

To make progress in disordered systems we have to go through the moments of the partition function. For simplicity we consider polymers starting in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0=0} and ending in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_t} . We recall that

  • is a Gaussian field with
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{V(x,\tau)}=0, \quad \overline{V(x,\tau) V(x',\tau')} = D \delta^d(x-x') \delta(\tau-\tau') }
  • From the Wick theorem, for a generic Gaussian Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W } field we have

The first moment of the partition function is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{Z_t[x_t,t] } =\int_{x(0)=0}^{x(t)=x_t} {\cal D} x_1 \exp\left[- \frac{1}{T} \int_0^t d \tau \frac{1}2(\partial_\tau x)^2\right] \overline{\exp\left[- \frac{1}{T} \int d \tau V(x,\tau ) \right]} }

Note that the term Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T^2 \overline{W^2} = \int d \tau_1 d\tau_2 \overline{V(x,\tau_1)V(x,\tau_2)}= D t \delta_0} has a short distance divergence due to the delta-function. Hence we can write:

Exercise L4-A: the second moment

  • Step 1:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{Z[x_t,t]^2 } = \exp\left[ \frac{D t \delta_0}{T^2} \right]\int {\cal D} x_1\int {\cal D} x_2 \exp\left[- \int_0^t d \tau \frac{1}{2T}[(\partial_\tau x_1)^2- (\partial_\tau x_2)^2 ]+ \frac{D}{T^2} \delta^d[x_1(\tau)-x_2(\tau)]\right] }

Now you can change coordinate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X=(x_1+x_2)/2; \; u=x_1-x_2} and get:

  • Step 2: Hence, the quantity Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{Z[x_t,t]^2}/ (\overline{Z[x_t,t]})^2} can be computed from the spectrum of the following Hamiltonian
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H= -2 T \nabla^2 - \frac{D}{T^2} \delta^d[u] }