L-5: Difference between revisions

From Disordered Systems Wiki
Jump to navigation Jump to search
Line 30: Line 30:
* Existence of a unique critical force <math> f_c </math>: no-passing rule and Larkin model
* Existence of a unique critical force <math> f_c </math>: no-passing rule and Larkin model


* Large force behaviour  
* Large force behaviour


== Scaling behaviour of the depinning transition ==  
== Scaling behaviour of the depinning transition ==  

Revision as of 20:03, 21 February 2024

Goal : This is the first lecture about the dynamics of a disordered system. We will see that different systems display pinning until a critical threshold. We will revisit Larkin arguments and discuss the spectrum of excitation of the instabilities.

Pinning and depininng of a disordered material

In the first lectures we saw that a disorder system can be trapped in deep energy states and form a glass. Today we will see that it can be also pinned and resist external deformation. Indeed disorder is at the origin of a complex energy landscape characterized by many minima (more or less deep), maxima and saddle points. An external force tilts this multidimensional landscape in a direction, but local minima survives until a finite threshold that unveils spectacular critical dynamics.

Experiments

We will discuss two examples of transition induced by pinning:

  • The depinning transition: interfaces pinned by impurities are ubiquitous and range from magnetic domain walls to crack fronts, from dislocations in crystals or vortices in superconductors. Above a critical force, interfaces depin, their motion is intermittent and a Barkhausen noise is detected.
  • The yielding transition: Everyday amorphous materials such as mayonnaise, toothpaste or foams display a behaviour intermediate between solid and liquid. They deform at small stress (as a solid) and flow  at large stress (as a liquid). In between we observe intermittent plastic events.

Equation of motion

We focus on zero temperature and on the overdamped regime. In presence of an external force Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f } the equation of motion of the interface is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial_t h(x,t)= \nabla^2 h +f +F(x,h(x,t)), \quad \text{with} \; F(x,h(x,t))= - \frac{\delta V(x,h(x,t))}{\delta h(x,t)} }

The disorder force Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x,h(x,t))} is a stochastic function:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{F(x,h) F(x',h')} =\delta^d(x-x') \Delta(h-h') }

There are usually two kind of disorder: (i) Random Bond (RB) if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x,h)} is short range correlated. Hence, the area below Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta(h)} is zero, (ii) Random field if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x,h)} is a Brownian motion along Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} .Hence, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta(h)} is short range corraleted.

  • The velocity - force characteristic
  • Existence of a unique critical force Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_c } : no-passing rule and Larkin model
  • Large force behaviour

Scaling behaviour of the depinning transition

  • The order parameter of the transition is the velocity of the center of mass of the interface. It is vanishing as
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_{CM} \sim |f-f_c|^\beta. }
  • Two point correlation function:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{v(y+x,t) v(y,t)} \sim \frac{e^{-x/\xi(f)}}{|x|^{\eta}}, \quad \xi(f) \sim |f-f_c|^{-\nu} }
  • The interface is rough at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_c }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(bx) \sim b^{\zeta} u(x), \quad \hat u_{b q} \sim b^{\zeta-d} u_{q} }


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\hat u_{q} \hat u_{q'}} =\delta^d(q+q') S(q), \quad S(q) \sim \frac{1}{|q|^{d+2 \zeta}} }


  • The motion is intermittent with avalanches even below Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_c } . Their size and duration is scale free up to a cut-off:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(S) = S^{-\tau} f(S/S_\max), \quad S_\max \sim \xi(f)^{d+\zeta} \sim |f-f_c|^{-(d+\zeta)\nu} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(T) = T^{-\alpha} f(T/T_\max), \quad T_\max \sim \xi(f)^{z} \sim |f-f_c|^{-(z)\nu} }

To work below threshold it iss useful to study the following protocol


Depinning exponents
Exponent Observable Mean field d=1
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell(t) \sim t^{z} } 2 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1.43\pm 0.01}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \zeta} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(b x) \sim b^\zeta h(x)} 0 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1.25\pm 0.01}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \xi(f) \sim |f-f_c|^{-\nu}} 1/2 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu= \frac{1}{2-\zeta}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_{CM} \sim |f-f_c|^{\beta}} 1 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta= \nu(z-\zeta)}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(S) \sim S^{-\tau}} 3/2 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau= 2 -\frac{2}{d+\zeta}}


Cellular Automata