L-1: Difference between revisions

From Disordered Systems Wiki
Jump to navigation Jump to search
Line 20: Line 20:
</math></center>
</math></center>
It is crucial to assume <math>
It is crucial to assume <math>
  \bar{ \;J\;}=0 </math>, otherwise the model displays ferro/antiferro order. We sill discuss two distributions:
  \bar{ \quadJ\quad}=0 </math>, otherwise the model displays ferro/antiferro order. We sill discuss two distributions:
* Gaussian couplings: <math> \pi(J) =\exp\left(-J^2/2\right)/\sqrt{2 \pi}</math>
* Gaussian couplings: <math> \pi(J) =\exp\left(-J^2/2\right)/\sqrt{2 \pi}</math>
* Coin toss couplings, <math>J= \pm 1 </math>, selected  with probability <math>1/2 </math>.
* Coin toss couplings, <math>J= \pm 1 </math>, selected  with probability <math>1/2 </math>.

Revision as of 16:22, 12 November 2023

Spin glass Transition

Experiments

Parlare dei campioni di rame dopati con il magnesio, marino o no: trovare due figure una di suscettivita e una di calore specifico, prova della transizione termodinamica.

Edwards Anderson model

We consider for simplicity the Ising version of this model.

Ising spins takes two values Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma=\pm 1} and live on a lattice of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N } sitees Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=1,2,\ldots,N } . The enregy is writteen as a sum between the nearest neighbours <i,j>:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E= \sum_{ <i, j> } J_{ij} \sigma_i \sigma_j }

Edwards and Anderson proposed to study this model for couplings Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J } that are i.i.d. random variables with zero mean. We set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi(J)} the coupling distribution indicate the avergage over the couplings called disorder average, with an overline:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bar{J} \equiv \int d J \, J \, \pi(J)=0 }

It is crucial to assume Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bar{ \quadJ\quad}=0 } , otherwise the model displays ferro/antiferro order. We sill discuss two distributions:

  • Gaussian couplings: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi(J) =\exp\left(-J^2/2\right)/\sqrt{2 \pi}}
  • Coin toss couplings, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J= \pm 1 } , selected with probability Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1/2 } .

Edwards Anderson order parameter

The SK model

Random energy model

Derivation

Bibliography

Bibliography

  • Theory of spin glasses, S. F. Edwards and P. W. Anderson, J. Phys. F: Met. Phys. 5 965, 1975

=