T-2: Difference between revisions

From Disordered Systems Wiki
Jump to navigation Jump to search
Line 21: Line 21:
=== Problem 2: the annealed free energy ===
=== Problem 2: the annealed free energy ===


We now compute the equilibrium phase diagram of the model, and in particular the quenched free energy density <math>f </math> which controls the scaling of the typical value of the partition function, <math>Z \sim e^{-N \beta \, f +o(N) } </math>. We show that the free energy equals to
In TD1, we defined the quenched free energy density as the quantity controlling the scaling of the typical value of the partition function <math>Z </math>. The annealed free energy <math>f_{ann} </math> instead controls the scaling of the average value of <math>Z </math>. It is defined by
<center><math>
<center><math>
f =  
f_{ann} = -\lim_{N \to \infty} \frac{1}{\beta N} \log \overline{Z}.
\begin{cases}
&- \left( T \log 2 + \frac{1}{4 T}\right) \quad \text{if} \quad T \geq T_c\\
& - \sqrt{\log 2} \quad \text{if} \quad T <T_c
\end{cases} \quad \quad T_c= \frac{1}{2 \sqrt{\log 2}}.
</math></center>
</math></center>
At <math> T_c </math> a transition occurs, often called freezing transition: in the whole low-temperature phase, the free-energy is “frozen” at the value that it has at the critical temperature  <math>T= T_c </math>.
At <math> T_c </math> a transition occurs, often called freezing transition: in the whole low-temperature phase, the free-energy is “frozen” at the value that it has at the critical temperature  <math>T= T_c </math>.


Line 53: Line 50:


'''Comment:''' the low-T phase of the REM is a frozen phase, characterized by the fact that the free energy is temperature independent, and that the typical value of the partition function is very different from the average value. In fact, the low-T phase is also <math> a glass phase </math> in the sense discussed in the lecture. It is characterized by the fact that Replica Symmetry is broken, as one sees explicitly by re-deriving the free energy through the replica method. We go back to this in the next lectures/TDs.
'''Comment:''' the low-T phase of the REM is a frozen phase, characterized by the fact that the free energy is temperature independent, and that the typical value of the partition function is very different from the average value. In fact, the low-T phase is also <math> a glass phase </math> in the sense discussed in the lecture. It is characterized by the fact that Replica Symmetry is broken, as one sees explicitly by re-deriving the free energy through the replica method. We go back to this in the next lectures/TDs.


=== Problem 3: the quenched free energy ===
=== Problem 3: the quenched free energy ===

Revision as of 18:09, 6 December 2023

In this set of problems, we use the replica method to study the equilibrium properties of a prototypical toy model of glasses, the spherical Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} -spin model.


Problem 1: getting acquainted with the model

In the spherical Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} -spin model the configurations Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{\sigma}=(\sigma_1, \cdots, \sigma_N) } that the system can take satisfy the spherical constraint Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^N \sigma_i^2=N } , and the energy associated to each configuration is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E(\vec{\sigma}) =\sum_{1 \leq i_1 \leq i_2 \leq \cdots i_p \leq N} J_{i_1 \,i_2 \cdots i_p} \sigma_{i_1} \sigma_{i_2} \cdots \sigma_{i_p}, }

where the coupling constants Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{i_1 \,i_2 \cdots i_p}} are independent random variables with Gaussian distribution with zero mean and variance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p!/ (2 N^{p-1}),} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p \geq 3} is an integer.


  1. Energy correlations. At variance with the REM, in the spherical Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} -spin the energies at different configurations are correlated. Show that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{E(\vec{\sigma}) E(\vec{\tau})}= N q(\vec{\sigma}, \vec{\tau})^p/2 + o(1) } , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q(\vec{\sigma}, \vec{\tau})= \frac{1}{N}\sum_{i=1}^N \sigma_i \tau_i } is the overlap between the two configurations. Why an we say that for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p \to \infty } this model converges with the REM discussed in the previous TD?


Problem 2: the annealed free energy

In TD1, we defined the quenched free energy density as the quantity controlling the scaling of the typical value of the partition function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z } . The annealed free energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_{ann} } instead controls the scaling of the average value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z } . It is defined by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_{ann} = -\lim_{N \to \infty} \frac{1}{\beta N} \log \overline{Z}. }

At Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_c } a transition occurs, often called freezing transition: in the whole low-temperature phase, the free-energy is “frozen” at the value that it has at the critical temperature Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T= T_c } .

  1. The thermodynamical transition and the freezing. The partition function the REM reads Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z = \sum_{\alpha=1}^{2^N} e^{-\beta E_\alpha}= \int dE \, \mathcal{N}(E) e^{-\beta E}. } Using the behaviour of the typical value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{N} } determined in Problem 1, derive the free energy of the model (hint: perform a saddle point calculation). What is the order of this thermodynamic transition?


  1. Entropy. What happens to the entropy of the model when the critical temperature is reached, and in the low temperature phase? What does this imply for the partition function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z} ?


  1. Fluctuations, and back to average vs typical. Similarly to what we did for the entropy, one can define an annealed free energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^A } from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{Z}=e^{- N \beta f^A + o(N)} } : show that in the whole low-temperature phase this is smaller than the quenched free energy obtained above. Putting all the results together, justify why the average of the partition function in the low-T phase is "dominated by rare events".


Comment: the low-T phase of the REM is a frozen phase, characterized by the fact that the free energy is temperature independent, and that the typical value of the partition function is very different from the average value. In fact, the low-T phase is also Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a glass phase } in the sense discussed in the lecture. It is characterized by the fact that Replica Symmetry is broken, as one sees explicitly by re-deriving the free energy through the replica method. We go back to this in the next lectures/TDs.

Problem 3: the quenched free energy

In this final exercise, we show how the freezing transition can be understood in terms of extreme valued statistics (discussed in the lecture) and localization. We consider the energies of the configurations and define Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_\alpha= - N \sqrt{\log 2} + \delta E_\alpha } , so that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {Z} = e^{ \beta N \sqrt{\log 2} }\sum_{\alpha=1}^{2^N} e^{-\beta \delta E_\alpha}= e^{ \beta N \sqrt{\log 2} }\sum_{\alpha=1}^{2^N} z_\alpha }

We show that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z } is a sum of random variables that become heavy tailed for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T < T_c } , implying that the central limit theorem is violated and this sum is dominated by few terms, the largest ones. This can be interpreted as the occurrence of localization.


  1. Heavy tails and concentration. Compute the distribution of the variables Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta E_\alpha } and show that for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\delta E)^2/N \ll 1 } this is an exponential. Using this, compute the distribution of the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z_\alpha } and show that it is a power law,
    Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(z)= \frac{c}{z^{1+\mu}} \quad \quad \mu= \frac{2 \sqrt{\log 2}}{\beta} }
    When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T < T_c } , one has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu<1 } : the distribution of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z } becomes heavy tailed. What does this imply for the sum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z } ? Is this consistent with the behaviour of the partition function and of the entropy discussed in Problem 2? Why can one talk about a localization or condensation transition?


  1. Inverse participation ratio. The low temperature behaviour of the partition function an be characterized in terms of a standard measure of localization (or condensation), the Inverse Participation Ratio (IPR) defined as:
    Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle IPR= \frac{\sum_{\alpha=1}^{2^N} z_\alpha^2}{[\sum_{\alpha=1}^{2^N} z_\alpha]^2}= \sum_{\alpha=1}^{2^N} \omega_\alpha^2 \quad \quad \omega_\alpha=\frac{ z_\alpha}{\sum_{\alpha=1}^{2^N} z_\alpha}. }

    When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z } is power law distributed with exponent Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu } , one can show (HOMEWORK!) that

    Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle IPR= \frac{\Gamma(2-\mu)}{\Gamma(\mu) \Gamma(1-\mu)}. }

    Discuss how this quantity changes across the transition at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu=1 } , and how this fits with what you expect in general in a localized phase.