L-5: Difference between revisions
| Line 92: | Line 92: | ||
====Step 1: Discretization along the <math>x</math> direction==== | ====Step 1: Discretization along the <math>x</math> direction==== | ||
The interface is represented as a collection of blocks <math>i=1, | The interface is represented as a collection of blocks <math> i=1, \ldots,L</math> connected by springs, where the spring constant is set to one. The velocity of the <math>i</math>-th block is given by: | ||
<center><math> | <center><math> | ||
v_i(t) =\partial_t h_i(t)= \frac12 (h_{i+1}(t)+h_{i-1}(t) -2 h_i(t)) + f +F_i(h_i(t)), | v_i(t) =\partial_t h_i(t)= \frac12 (h_{i+1}(t)+h_{i-1}(t) -2 h_i(t)) + f +F_i(h_i(t)), | ||
Revision as of 17:40, 14 February 2025
Goal: This is the first lecture on the dynamics of disordered systems. We will explore how disorder in various systems induces pinning up to a critical threshold. Near this threshold, the dynamics become intermittent and are dominated by large reorganizations known as avalanches.
Pinning and Depinning of a Disordered Material
In earlier lectures, we discussed how disordered systems can become trapped in deep energy states, forming a glass. Today, we will examine how such systems can also be pinned and resist external deformation. This behavior arises because disorder creates a complex energy landscape with numerous features, including minima (of varying depth), maxima, and saddle points.
When an external force is applied, it tilts this multidimensional energy landscape in a specific direction. However, local minima remain stable until a finite critical threshold is reached. Two important dynamical phase transitions are induced by pinning
- The depinning transition: Interfaces pinned by impurities are ubiquitous and range from magnetic domain walls to crack fronts, from dislocations in crystals to vortices in superconductors. Above a critical force, interfaces depin, their motion becomes intermittent, and a Barkhausen noise is detected.
- The yielding transition: Everyday amorphous materials such as mayonnaise, toothpaste, or foams exhibit behavior intermediate between solid and liquid. They deform under small stress (like a solid) and flow under large stress (like a liquid). In between, we observe intermittent plastic events.
Depinning tranition: the equation of motion
In the following we focus on the depinning trasition. At zero temperature and in the overdamped regime, where , the equation of motion for the interface is:
Here we set, the external force and the disorder force is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x,h(x,t))} . Again we can consider a gaussian force of zero mean and correlations:
There are usually two kinds of disorder:
- (i) Random Bond (RB): If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x,h)} is short-range correlated, the area below Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta(h)} is zero.
- (ii) Random Field: If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x,h)} behaves like a Brownian motion along Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} , then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta(h)} is short-range correlated.
The No-Passing Rule
Interfaces obey the so-called no-passing rule. Consider two interfaces Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h_\alpha(x,t)} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h_\beta(x,t)} such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h_\alpha(x,t=0) < h_\beta(x,t=0)} for every Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} . In the overdamped case, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} will never overtake Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta} .
To see why, assume for contradiction that at some time Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^*} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} reaches Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta} at a point Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^*} , i.e., Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h_\alpha(x^*,t^*) = h_\beta(x^*,t^*)} . At this point, it can be shown that the local velocity of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} , denoted by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_\alpha(x^*,t^*)} , is strictly less than the local velocity of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_\beta(x^*,t^*)} .
This contradiction implies that the no-passing rule holds: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} cannot overtake Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta} . An important consequence of the no-passing rule is that the value of the critical force Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_c} is independent of the initial condition. Indeed, if at a given force Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} the configuration Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta} is a dynamically stable state, it will act as an impenetrable boundary for all configurations preceding it.
When Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f = f_c} , the system possesses a single dynamically stable configuration. For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f > f_c} , no metastable states exist, and the system transitions into a fully moving phase.
Critical Properties at Depinning
- At the critical force Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_c} , the interface becomes rough with a new roughness exponent:
- Starting from a flat configuration and setting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f = f_c} , the roughening process occurs over a growing length scale:
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z} is the dynamical exponent.
At the depinning transition, the interface is not only self-affine but also exhibits critical dynamics characterized by avalanches:
- The order parameter of the transition is the center-of-mass velocity of the interface, which vanishes near the critical force as:
- The correlation length can be determined from the two-point velocity correlations:
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \xi(f)} diverges at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_c} with the exponent Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu} .
- Below Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_c} , the motion of the interface is intermittent, characterized by avalanches. The size distribution of avalanches is scale-free up to a cut-off:
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d} is the spatial dimension, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau} characterizes the avalanche size distribution.
| Exponent | Observable | Mean field | d=1 |
|---|---|---|---|
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell(t) \sim t^{z} } | 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1.43\pm 0.01} |
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \zeta} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(b x) \sim b^\zeta h(x)} | 0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1.25\pm 0.01} |
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu} | 1/2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu= \frac{1}{2-\zeta}} | |
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_{CM} \sim |f-f_c|^{\beta}} | 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta= \nu(z-\zeta)} |
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(S) \sim S^{-\tau}} | 3/2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau= 2 -\frac{2}{d+\zeta}} |
Cellular Automata
Our goal is to study the avalanches observed as the critical force is approached from below. To this end, we introduce a discrete version of the interface's equation of motion. These cellular automata belong to the same universality class as the original model. They are simple to implement numerically, allow a straightforward definition of avalanches, and can be solved in the mean-field limit. For simplicity, we first discuss the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d=1} case.
Step 1: Discretization along the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} direction
The interface is represented as a collection of blocks Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=1, \ldots,L} connected by springs, where the spring constant is set to one. The velocity of the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} -th block is given by:
Step 2: Force control versus displacement control protocols
In this setup, the external force ff is the control parameter. Typically, one fixes ff, allows the system to reach a dynamically stable configuration, and then infinitesimally increases ff to trigger an avalanche. However, to gather avalanche size statistics, this approach requires finding a new dynamically stable configuration at each increment of ff, which is computationally inefficient.
An alternative is to control the displacement of the center of mass, hCMhCM, of the dynamically stable configuration. To achieve this, we introduce a parabolic potential:
To study avalanches below threshold, one as to trigger them at constant force, which is not very convenient. It is useful to replace the external force with a parabolic potential Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{m^2}{2}(w-h_i(t))^2} , here Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m^2} is the spring constant, try to bring each block at the equilibrium position Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} . The velocity of each block becomes
Note that in a stable configuration, where all the velocity are zero, the force acting on the line per unit length is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m^2(w-h_{CM}(t))} . Increasing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w } the force slowly increases if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h_{CM} } doest not move. When an avalanche occurs the force decreses.
Finally, the most important step is to introduce the narrow-well approximation for the disorder. We imagine that along Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h_i} impurities act as pinning center that trap the block around their position until a local threshold Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_i^{th}} is reached. In this limit the local velocities are zero when the block is trapped and quickly move to the next impurity once the threshold is overcome. The obteained cellular automata can be described by the following algorithm:
- Drive: Increasing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} each point of the interface is pulled with a slowly increasing force or stress:
.
- Instability: An instability occurs when reaches its Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_i^{th}} . Hence the point moves to the next well
Note that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta} is a positive random variable drwan from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(\Delta)} .
- Avalanche: The two neighbours can be unstable... An avalanche can start...