T-II-3: Difference between revisions
Line 14: | Line 14: | ||
</math> | </math> | ||
</center> | </center> | ||
This quantity is a measure of <em>ergodicity breaking</em>: when ergodicity is broken, the Boltzmann measure clusters into <em>pure states</em> <math>\alpha </math>, meaning that one can re-write the sum over all configurations as a sum over | This quantity is a measure of <em>ergodicity breaking</em>: when ergodicity is broken, the Boltzmann measure clusters into <em>pure states</em> <math>\alpha </math>, meaning that one can re-write the sum over all configurations as a sum over states: | ||
<center> | |||
<math> | |||
Z= \int d \vec{\sigma} e^{-\beta E[\vec{\sigma}]}= | |||
</math> | |||
</center> | |||
Revision as of 12:01, 21 December 2023
Goal of these problems:
In this set of problems, we compute the free energy of the spherical -spin model in the Replica Symmetric (RS) framework, and in the 1-step Replica Symmetry Broken (1-RSB) framework.
Key concepts:
The order parameters: overlaps, and their meaning
In the lectures, we have introduced the Edwardds-Anderson order parameter
This quantity is a measure of ergodicity breaking: when ergodicity is broken, the Boltzmann measure clusters into pure states , meaning that one can re-write the sum over all configurations as a sum over states:
non-zero in a spin-glass phase, but it is also different from zero in unfrustrated ferromagnets: in the low-T phase of an Ising model, it equals to , where is the magnetization. It is the self overlap within a state. Now, overlap between various states.
This quantity can be computed within the replica formalism (try to do it!), and one finds
where are the saddle point values of the overlap matrix introduced in Problem 2.2. The solution of the saddle point equations for the overlap matrix thus encodes a lot of information on the system; in particular, they contain the information on whether spin glass order emerges (meaning that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{(1)}>0 } ). More generally, we can write:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{(1)}= \int dq \, \overline{P}(q) q \quad \quad \quad \overline{P}(q)=\lim_{n \to 0} \frac{2}{n(n-1)}\sum_{a>b}\delta \left(q- Q_{ab}^{SP}\right), }
where is the probability that two copies of the system, equilibrating in the same disordered environment, end up having overlap q with each others. A non-trivial distribution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{P}(q)} is an indicator of ergodicity breaking in the systems: it indicates that the Boltzmann measure is partitioned into several pure states (like the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle +m} and states in the Ising case, where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} is the magnetization), and it measures the typical overlaps between configurations belonging to the same, or different states. In Ising, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{P}(q)= \delta(q-m^2)} .
Problem 3.1: the RS (Replica Symmetric) calculation
Let us consider the simplest possible ansatz for the structure of the matrix Q, that is the Replica Symmetric (RS) ansatz:
Under this assumption, there is a unique saddle point variable, that is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0} .
-
Check that the inverse of the overlap matrix is
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q^{-1}=\begin{pmatrix} \alpha & \beta &\beta \cdots& \beta\\ \beta & \alpha &\beta \cdots &\beta\\ &\cdots& &\\ \beta & \beta &\beta \cdots &\alpha \end{pmatrix} \quad \quad \text{with} \quad \alpha= \frac{1}{1-q_0} \quad \text{and} \quad \beta=\frac{-1}{(1-q_0)[1+(n-1)q_0]} }
Compute the saddle point equation for in the limit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \to 0} , and show that this equation admits always the solution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0= 0} : why is this called the paramagnetic solution?
- Compute the free energy corresponding to the solution , and show that it reproduces the annealed free energy. Do you have an interpretation for this?
- Overlpa interpretation
Problem 3.2: the 1-RSB (Replica Symmetry Broken) calculation
In the previous problem, we have chosen a certain parametrization of the overlap matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q} , which corresponds to assuming that typically all the copies of the systems fall into configurations that are at overlap Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0} with each others, no matter what is the pair of replicas considered. This assumption is however not the good one at low temperature. We now assume a different parametrisation, that corresponds to breaking the symmetry between replicas: in particular, we assume that typically the replicas fall into configurations that are organized in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n/m} groups of size Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} ; pairs of replicas in the same group are more strongly correlated and have overlap , while pairs of replicas belonging to different groups have a smaller overlap Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0<q_1} . This corresponds to the following block structure for the overlap matrix:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q=\begin{pmatrix} 1 & q_1 &q_1& q_0 & q_0 \cdots& q_0\\ q_1 & 1 &q_1& q_0 & q_0 \cdots& q_0\\ q_1 & q_1 &1& q_0 & q_0 \cdots& q_0\\ \cdots\\ \cdots\\ \cdots\\ q_0 & q_0 \cdots& q_0&1 & q_1 &q_1\\ q_0 & q_0 \cdots& q_0&q_1 & 1 &q_1\\ q_0 & q_0 \cdots& q_0&q_1 & q_1 &1\\ \end{pmatrix} }
Here we have three parameters: (in the formula above, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m=3} ).
-
Using that
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log \det Q=n\frac{m-1}{m} \log (1-q_1)+ \frac{n-m}{m} \log [m(q_1-q_0) + 1-q_1]+ \log \left[nq_0+ m(q_1-q_0)+ 1-q_1 \right]}
show that the free energy now becomes:
Under which limit this reduces to the replica symmetric expression?
-
Compute the saddle point equations with respect to the parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0, q_1 }
and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m }
are. Check that is again a valid solution of these equations, and that for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0=0}
the remaining equations reduce to:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (m-1) \left[ \frac{\beta^2}{q}p q_1^{p-1}-\frac{1}{m}\frac{1}{1-q_1}+ \frac{1}{m}\frac{1}{1+ (m-1)q_1} \right]=0, \quad \quad \frac{\beta^2}{2} q_1^p + \frac{1}{m^2}\log \left( \frac{1-q_1}{1+ (m-1)q_1}\right)+ \frac{q_1}{m [1+(m-1)q_1]}=0 }
How does one recover the paramagnetic solution?
-
We now look for a solution different from the paramagnetic one. To begin with, we set to satisfy the first equation, and look for a solution of
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\beta^2}{2} q_1^p + \log \left(1-q_1\right)+ q_1=0 }
Plot this function for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p=3} and different values of , and show that there is a critical temperature Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_c} where a solution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_1 \neq 0} appears: what is the value of this temperature (determined numerically)?