L-4: Difference between revisions

From Disordered Systems Wiki
Jump to navigation Jump to search
Line 24: Line 24:
The first moment of the partition function is
The first moment of the partition function is
<center> <math>
<center> <math>
\overline{Z_t[x,t] } =\int_{x(0)=0}^{x(t)=x} {\cal D} x(\tau) \exp\left[- \frac{1}{T} \int_0^t d \tau \frac{1}2(\partial_\tau x)^2\right]  \overline{\exp\left[- \frac{1}{T} \int d \tau V(x(\tau),\tau ) \right]}
\overline{Z(x,t) } =\int_{x(0)=0}^{x(t)=x} {\cal D} x(\tau) \exp\left[- \frac{1}{T} \int_0^t d \tau \frac{1}2(\partial_\tau x)^2\right]  \overline{\exp\left[- \frac{1}{T} \int d \tau V(x(\tau),\tau ) \right]}
</math></center>
</math></center>
Note that the term <math> T^2 \overline{W^2} = \int d \tau_1 d\tau_2 \overline{V(x,\tau_1)V(x,\tau_2)}= D t \delta_0</math> has a short distance divergence due to the delta-function.  Hence we can write:
Note that the term <math> T^2 \overline{W^2} = \int d \tau_1 d\tau_2 \overline{V(x,\tau_1)V(x,\tau_2)}= D t \delta_0</math> has a short distance divergence due to the delta-function.  Hence we can write:
<center> <math>
<center> <math>
\overline{Z_t[x] } = \frac{1}{(2 \pi t T)^{d/2}}\exp\left[ -\frac{1}{2} \frac{ x^2}{t T} \right]  \exp\left[ \frac{D  t \delta_0}{2T^2}  \right]
\overline{Z(x,t) } = \frac{1}{(2 \pi t T)^{d/2}}\exp\left[ -\frac{1}{2} \frac{ x^2}{t T} \right]  \exp\left[ \frac{D  t \delta_0}{2T^2}  \right]
</math></center>
</math></center>


Line 36: Line 36:
* Step 1: The second moment is
* Step 1: The second moment is
<center> <math>
<center> <math>
\overline{Z[x_t,t]^2 } =\int {\cal D} x_1\int  {\cal D} x_2 \exp\left[-  \int_0^t d \tau  \frac{1}{2T}[(\partial_\tau x_1)^2+ (\partial_\tau x_2)^2 \right]  \overline{\exp\left[- \frac{1}{T} \int_0^t d \tau_1 V(x_1(\tau_1),\tau_1 ) - \frac{1}{T} \int_0^t d \tau_2 V(x_2(\tau_2),\tau_2 )\right]}
\overline{Z(x,t)^2 } =\int {\cal D} x_1\int  {\cal D} x_2 \exp\left[-  \int_0^t d \tau  \frac{1}{2T}[(\partial_\tau x_1)^2+ (\partial_\tau x_2)^2 \right]  \overline{\exp\left[- \frac{1}{T} \int_0^t d \tau_1 V(x_1(\tau_1),\tau_1 ) - \frac{1}{T} \int_0^t d \tau_2 V(x_2(\tau_2),\tau_2 )\right]}
</math></center>
</math></center>


* Step 2: Use Wick and derive:
* Step 2: Use Wick and derive:
<center> <math>
<center> <math>
\overline{Z[x_t,t]^2 } = \exp\left[ \frac{D  t \delta_0}{T^2}  \right]\int {\cal D} x_1\int  {\cal D} x_2 \exp\left[-  \int_0^t d \tau  \frac{1}{2T}[(\partial_\tau x_1)^2+ (\partial_\tau x_2)^2 - \frac{D}{T^2} \delta^d[x_1(\tau)-x_2(\tau)]\right]
\overline{Z(x,t)^2 } = \exp\left[ \frac{D  t \delta_0}{T^2}  \right]\int {\cal D} x_1\int  {\cal D} x_2 \exp\left[-  \int_0^t d \tau  \frac{1}{2T}[(\partial_\tau x_1)^2+ (\partial_\tau x_2)^2 - \frac{D}{T^2} \delta^d[x_1(\tau)-x_2(\tau)]\right]
</math></center>
</math></center>


* Step 3: Now  change coordinate <math>X=(x_1+x_2)/2; \; u=x_1-x_2</math> and get:
* Step 3: Now  change coordinate <math>X=(x_1+x_2)/2; \; u=x_1-x_2</math> and get:
<center> <math>
<center> <math>
\overline{Z[x_t,t]^2} = (\overline{Z[x_t,t]})^2 \frac{\int_{u(0)=0}^{u(t)=0} {\cal D} u  \exp\left[-  \int_0^t d \tau  \frac{1}{4T}(\partial_\tau u)^2- \frac{D}{T^2} \delta^d[u(\tau)]\right]}{\int_{u(0)=0}^{u(t)=0} {\cal D} u  \exp\left[-  \int_0^t d \tau  \frac{1}{4T}(\partial_\tau u)^2\right]}
\overline{Z(x,t)^2} = (\overline{Z(x,t)})^2 \frac{\int_{u(0)=0}^{u(t)=0} {\cal D} u  \exp\left[-  \int_0^t d \tau  \frac{1}{4T}(\partial_\tau u)^2- \frac{D}{T^2} \delta^d[u(\tau)]\right]}{\int_{u(0)=0}^{u(t)=0} {\cal D} u  \exp\left[-  \int_0^t d \tau  \frac{1}{4T}(\partial_\tau u)^2\right]}
</math></center>
</math></center>


====Discussion====
====Discussion====
Hence, the quantity <math>\overline{Z[x_t,t]^2}/ (\overline{Z[x_t,t]})^2</math> can be computed.  
Hence, the quantity <math>\overline{Z(x,t)^2}/ (\overline{Z(x,t)})^2</math> can be computed.  
* The denominator  <math>\int_{u(0)=0}^{u(t)=0} {\cal D} u  \exp\left[-  \int_0^t d \tau  \frac{1}{4T}(\partial_\tau u)^2\right]  </math> is the free propagator and gives a contribution <math> \sim \sqrt{4 T  t}</math> .
* The denominator  <math>\int_{u(0)=0}^{u(t)=0} {\cal D} u  \exp\left[-  \int_0^t d \tau  \frac{1}{4T}(\partial_\tau u)^2\right]  </math> is the free propagator and gives a contribution <math> \sim (4 T  t)^{d/2}</math> .
* Let us define  the numerator  
* Let us define  the numerator  
<center> <math>
<center> <math>
Line 59: Line 59:
<Strong>Remark 1:</Strong> From T-I, remember that if  
<Strong>Remark 1:</Strong> From T-I, remember that if  
<center> <math>
<center> <math>
\frac{\overline{Z[x_t,t]^2}}{ (\overline{Z[x_t,t]})^2}=1
\frac{\overline{Z(x,t)^2}}{ (\overline{Z(x,t)})^2}=1
</math></center>
</math></center>
the partition function is self-averaging and <math> \overline{\ln Z[x,t]} =\ln\overline{Z[x,t]}
the partition function is self-averaging and <math> \overline{\ln Z(x,t)} =\ln\overline{Z(x,t)}
</math>.
</math>.
The condition above is sufficient but not necessary. It is enough that <math>
The condition above is sufficient but not necessary. It is enough that <math>
\overline{Z[x_t,t]^2}/ (\overline{Z[x_t,t]})^2 <\text{const} </math>,  when <math>  t\to \infty</math>, to have the equivalence between  annealed and quenched averages.
\overline{Z(x,t)^2}/ (\overline{Z(x,t)})^2 <\text{const} </math>,  when <math>  t\to \infty</math>, to have the equivalence between  annealed and quenched averages.


<Strong>Remark II:</Strong> From L-3, we derive using Feynman-Kac, the following equation
<Strong>Remark II:</Strong> From L-3, we derive using Feynman-Kac, the following equation
Line 70: Line 70:
\partial_t W(x,t) =-  \hat H W(x,t)  
\partial_t W(x,t) =-  \hat H W(x,t)  
</math></center>
</math></center>
Now the Hamiltonian reads:
Here the Hamiltonian reads:
<center> <math>
<center> <math>
\hat  H= -2 T \nabla^2 - \frac{D}{T^2} \delta^d[u]
\hat  H= -2 T \nabla^2 - \frac{D}{T^2} \delta^d[u]
</math></center>
</math></center>
The single particle  potential  is <Strong> time independent and actractive </Strong>.
<center> <math>
W(x,t) = \langle x|\exp\left( - \hat H t\right) |0\rangle
</math></center>
At large times the behaviour is dominatated by the low energy part of the spectrum.


Now the Hamiltonian is <Strong>time independent </Strong>:
* In <math> d\le 2</math> an actractive potential always gives a bound state. In particular the ground state has a negative energy <math> E_0 <0</math>. Hence at large times
<center> <math>
<center> <math>
W(x,t) = \langle x|\exp\left( - \hat H t\right) |0\rangle
W(x,t) = e{ |E_0| t}
</math></center>
grows exponentially. This means that at all temperature, when  <math>  t\to \infty</math>
<center><math> \overline{\ln Z(x,t)}  \ll \ln\overline{Z(x,t)}
</math></center>
 
* For <math> d > 2</math> a small actractive potential leads to a continuum positive spectrum  where, when  <math>  t\to \infty</math>
<center><math> \overline{\ln Z(x,t)} = \ln\overline{Z(x,t)}
</math></center>
</math></center>
At large times the behaviour is dominatate by the low energy part of the spectrum
Only below a critical temperature, the prefactor <math>\frac{D}{T^2} </math> is large enough to have a bound state and a glassy phase. This transition, in <math> d =3 </math>, is between a high temeprature, <math> \theta=0</math> phase and a low temeprature math> \theta>0</math> <Strong> no RSB </Strong> phase.

Revision as of 10:36, 12 February 2024

Goal : final lecture on KPZ and directed polymers at finite dimension. We will show that for a "glass transition" takes place.


KPZ : from to the Cayley tree

We know a lot about KPZ, but still we have much to understand:

  • In we found and a glassy regime present at all temperatures. The stationary solution of the KPZ equation describes, at long times, the fluctions of quantities like . However it does not identify the actual distribution of for a given . In particular we have no idea from where Tracy Widom comes from.
  • In , there is an exact solution for the Cayley tree that predicts a freezing transition to an 1RSB phase ().
  • In finite dimension, but larger than 1, there are no exact solutions. Numerical simulations find in . The case is very interesting.

Let's do replica!

To make progress in disordered systems we have to go through the moments of the partition function. For simplicity we consider polymers starting in and ending in . We recall that

  • is a Gaussian field with
  • From the Wick theorem, for a generic Gaussian field we have

The first moment

The first moment of the partition function is

Note that the term has a short distance divergence due to the delta-function. Hence we can write:

The second moment

Exercise: L-4

  • Step 1: The second moment is
  • Step 2: Use Wick and derive:
  • Step 3: Now change coordinate and get:

Discussion

Hence, the quantity can be computed.

  • The denominator is the free propagator and gives a contribution .
  • Let us define the numerator

Remark 1: From T-I, remember that if

the partition function is self-averaging and . The condition above is sufficient but not necessary. It is enough that , when , to have the equivalence between annealed and quenched averages.

Remark II: From L-3, we derive using Feynman-Kac, the following equation

Here the Hamiltonian reads:

The single particle potential is time independent and actractive .

At large times the behaviour is dominatated by the low energy part of the spectrum.

  • In an actractive potential always gives a bound state. In particular the ground state has a negative energy . Hence at large times

grows exponentially. This means that at all temperature, when

  • For a small actractive potential leads to a continuum positive spectrum where, when

Only below a critical temperature, the prefactor is large enough to have a bound state and a glassy phase. This transition, in , is between a high temeprature, phase and a low temeprature math> \theta>0</math> no RSB phase.