L-6: Difference between revisions

From Disordered Systems Wiki
Jump to navigation Jump to search
Line 91: Line 91:
   </math></center>
   </math></center>
<center><math>  
<center><math>  
X_t= \sum_{i=1}^t \eta_i  \quad \quad \text{with} \; \overline{\eta_i} = \frac{\overline{\Delta}}{L(1+m^2)} -\frac{1}{LP_w(0)}
X_t= \sum_{i=1}^t \eta_i  \quad \quad \text{with} \; \overline{\eta_i} = \frac{\overline{\Delta}}{L(1+m^2)} -\frac{1}{LP_w(0)}  
   </math></center>
   </math></center>
An avalanche is active until <math>
X_t </math> is positive. Hence, the size of the avalanche identifies with first passage time of the random walk.
* In the critical case  <math>  P(S) \sim S^{-3/2} </math>
* In the stationary regime an cut-off <math> S_{
max} \sim m^{-4}</math>

Revision as of 09:58, 3 March 2024

Avalanches and Bienaymé-Galton-Watson process

Goal: We solve the mean field version of the cellular automaton, derive its avalanche statistics and make a connection with the Bienaymé-Galton-Watson process used to describe an epidemic outbreak.

Fully connected (mean field) model for the cellular automaton

Let's study the mean field version of the cellular automata introduced in the previous lecture. We introduce two approximations:

  • Replace the Laplacian, which is short range, with a mean field fully connected interction
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_i= h_{CM} - h_i + m^2(w-h_i), \quad }

.


  • The local threshold are all equal. In particular we set

.


As a consequence, in the limit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L\to \infty} , the statistical properties of the system are described by the distribution of the local stresses Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_i } . For simplicity, instead of the stresses, we study the distance from threshold

Our goal is thus to determine their distribution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_w(x)} , given their intial distribution, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_0(x)} , and a value of .

Dynamics

Let's rewrite the dynamics with the new variables

  • Drive: Increasing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w \to w + dw} each point decreases its distance to threshold
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_i \to x_i - m^2 dw }

.

As a consequence


  • Instability 1: Stress drop The instability occurs when a point is at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_i =0 } . Then, the point is stabilized (stress drop):
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_i =0 \to x_i = \Delta }

Increasing , a fraction Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m^2 d w P_w(0) } of the blocks is unstable. Due to the stress drop, their distance to threshold becomes Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m^2 d w P_w(0) g(x) } . Hence, one writes


  • Instability 2: Stress redistribution The stress drop of a single block induces a stress redistribution where all blocks approach threshold.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_i \to = x_i - \frac{1}{L} \frac{\Delta}{1+m^2} }

The total stress drop is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m^2 d w P_w(0) \int d x x g(x) = m^2 d w P_w(0) \overline{\Delta} } hence all points move to the origin of

part of them shifts, part of them become unstable... we can write

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial_w P_{w}(x) = m^2 \left[\partial_x P_w(x) + P_w(0) g(x) \right] \left[ 1+P_w(0) \frac{\overline{\Delta}}{1+m^2} + (P_w(0) \frac{\overline{\Delta}}{1+m^2})^2 +\ldots\right] }

and finally:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial_w P_{w}(x) = \frac{m^2 }{1 -P_w(0) \frac{\overline{\Delta}}{1+m^2}} \left[\partial_x P_w(x) + P_w(0) g(x) \right] }

Stationary solution

Increasing the drive the distribution converge to the fixed point:

  • Determne Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{\text{stat}}(0) =\frac{1}{\overline{\Delta}} } using
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1= \int_0^\infty dx \, P_{\text{stat}}(x)= - \int_0^\infty dx \, x \partial_x P_{\text{stat}}(x) }
  • Show

which is well normalized.

Critical Force

The average distance from the threshold gives a simple relation for the critical force, namely Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1-f_c= \overline{x} } . Hence for the automata model we obtain:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_c= 1- \int_0^\infty d x x P_{\text{stat}}(x)= 1 - \frac{1}{2}\frac{\overline{\Delta^2}}{\overline{\Delta}} }

Exercise:

Let's assume an exponential distribution of the thresholds and show

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_c= 1- \overline{\Delta}}

Avalanches or instability?

Given the initial condition and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w } , the state of the system is described by . For each unstable block, all the blocks receive a kick. The mean value of the kick is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{\text{kick}}= \frac{\overline{\Delta}}{(1+m^2)L} }

Is this kick able to destabilize another block? The equation setting the average position of the most unstable block is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^{x_1} P_w(t) dt =\frac{1}{L} }

Hence, for large systems we have

We expect three possibilities:

  • if the mean kick, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sim \overline{\Delta}/(1+m^2) } is smaller than the mean gap Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sim 1 /P_w(0)} , the system is subcritical and avalanches quickly stops.
  • if the mean kick, is equal to the mean gap Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sim 1 /P_w(0)} , the system is critical and avalanches are power law distributed
  • if the mean kick, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sim \overline{\Delta}/(1+m^2) } is larger of the mean gap , the system is super-critical and avalanches are unstable.

Noe that in the stationary regime the system is subcritical when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m>0 } and critical for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m=0 }

Mapping to the Brownian motion

Let's define the random jumps and the associated random walk

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_t= \sum_{i=1}^t \eta_i \quad \quad \text{with} \; \overline{\eta_i} = \frac{\overline{\Delta}}{L(1+m^2)} -\frac{1}{LP_w(0)} }

An avalanche is active until Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_t } is positive. Hence, the size of the avalanche identifies with first passage time of the random walk.

  • In the critical case
  • In the stationary regime an cut-off Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{ max} \sim m^{-4}}