T-9: Difference between revisions
Jump to navigation
Jump to search
Line 35: | Line 35: | ||
</li><br> | </li><br> | ||
<li><em> The stability analysis. </em> We now wish to check the stability of our assumption to be in the localized phase, <math> \Gamma_a \sim \eta \ll 1 </math>, which led to the identity above for <math> \Phi(s) </math>. Our assumption is that the typical value of <math> \Gamma_a </math> is small, except for cases in which one of the descendants <math> b </math> is such that <math> \epsilon_b </math> is very small, in which case <math> \Gamma_a \sim 1/ \epsilon_b^2 </math>. | <li><em> The stability analysis. </em> We now wish to check the stability of our assumption to be in the localized phase, <math> \Gamma_a \sim \eta \ll 1 </math>, which led to the identity above for <math> \Phi(s) </math>. Our assumption is that the typical value of <math> \Gamma_a </math> is small, except for cases in which one of the descendants <math> b </math> is such that <math> \epsilon_b </math> is very small, in which case <math> \Gamma_a \sim 1/ \epsilon_b^2 \gg 1 </math>. | ||
<ul> | <ul> | ||
<li> Show that if <math> \Gamma \sim 1/ \epsilon^2 </math> and <math>p(\epsilon)</math> is not gapped around zero, then <math>P_\Gamma(\Gamma) \sim \Gamma^{-3/2}</math>, i.e. the distribution has tails contributed by these events in which the local fields happen to be very small. </li> | <li> Show that if <math> \Gamma \sim 1/ \epsilon^2 </math> and <math>p(\epsilon)</math> is not gapped around zero, then <math>P_\Gamma(\Gamma) \sim \Gamma^{-3/2}</math>, i.e. the distribution has tails contributed by these events in which the local fields happen to be very small. </li> |
Revision as of 15:21, 13 March 2024
Goal: the goal of this problem is to determine when the solution of the distributional equations corresponding to localization is unstable, providing an estimate of thee mobility edge on the Bethe lattice.
Techniques: stability analysis, Laplace transforms.
Problems
We now focus on the self energies, since the criterion for localization is given in terms of these quantities. In this Problem we will determine for which values of parameters localization is stable, estimating the critical value of disorder where the transition to a delocalised phase occurs. Recall the results of Problem 8:
Problem 9: an estimate of the mobility edge
- Imaginary approximation and distributional equation. We consider the equations for and neglect the terms in the denominators, which couple the equations to those for the real parts of the self energies (“imaginary” approximation). Moreover, we assume to be in the localized phase, where . Finally, we set and for simplicity. Show that under these assumptions the probability density for the imaginary part, , satisfies
Show that the Laplace transform of this distribution, , satisfies
- The stability analysis. We now wish to check the stability of our assumption to be in the localized phase, , which led to the identity above for . Our assumption is that the typical value of is small, except for cases in which one of the descendants is such that is very small, in which case .
- Show that if and is not gapped around zero, then , i.e. the distribution has tails contributed by these events in which the local fields happen to be very small.
- Assume more generally that for large and . Show that this corresponds to for small, with .
- Show that the equation for gives for small , and therefore this is consistent provided that there exists a solving
- The critical disorder. Consider now local fields taken from a uniform distribution in . Compute and show that it is non monotonic, with a local minimum in the interval . Show that increases as the disorder is made weaker and weaker, and thus the transition to delocalisation occurs at the critical value of disorder when . Show that this gives
Why the critical disorder increases with ?
Check out: key concepts of this TD
References
- Abou-Chacra, Thouless, Anderson. A selfconsistent theory of localization. Journal of Physics C: Solid State Physics 6.10 (1973)