L-4: Difference between revisions

From Disordered Systems Wiki
Jump to navigation Jump to search
Line 54: Line 54:
</center>   
</center>   


* Step 2: Using Wick's theorem, we obtain** 
* Step 2: Using Wick's theorem, we obtain  


<center>   
<center>   

Revision as of 11:22, 2 February 2025

Goal : final lecture on KPZ and directed polymers at finite dimension. We will show that for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d>2} a "glass transition" takes place.


KPZ : from 1d to the Cayley tree

We know a lot about KPZ, but there is still much to understand:

  • In , we have found and a glassy regime present at all temperatures. The stationary solution of the KPZ equation describes, at long times, the fluctuations of quantities such as . However, it does not determine the actual distribution of for a given . In particular, we have no clear understanding of the origin of the Tracy-Widom distribution.
  • In , an exact solution exists for the Cayley tree, predicting a freezing transition to a 1RSB phase ().
  • In finite dimensions greater than one, no exact solutions are available. Numerical simulations indicate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta > 0} in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d=2} . The case remains particularly intriguing.

Let's do replica!

To make progress in disordered systems, we need to analyze the moments of the partition function. For simplicity, we consider polymers starting at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} and ending at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} . We recall that:

  • is a Gaussian field with
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{V(x,\tau)}=0, \quad \overline{V(x,\tau) V(x',\tau')} = D \delta^d(x-x') \delta(\tau-\tau') }
  • From Wick's theorem, for a generic Gaussian field Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W } , we have

The first moment

The first moment of the partition function is straightforward to compute and corresponds to a single replica:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{Z(x,t) } =\int_{x(0)=0}^{x(t)=x} {\cal D} x(\tau) \exp\left[- \frac{1}{T} \int_0^t d \tau \frac{1}{2}(\partial_\tau x)^2\right] \overline{\exp\left[- \frac{1}{T} \int d \tau V(x(\tau),\tau ) \right]} }

Note that the term Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T^2 \overline{W^2} = \int d \tau_1 d\tau_2 \overline{V(x,\tau_1)V(x,\tau_2)}= D t \delta_0} exhibits a short-distance divergence due to the delta function. Hence, we can write:

The second moment

For the second moment, there are two replicas:

  • Step 1: The second moment is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{Z(x,t)^2 } =\int {\cal D} x_1\int {\cal D} x_2 \exp\left[- \int_0^t d \tau \frac{1}{2T}[(\partial_\tau x_1)^2+ (\partial_\tau x_2)^2] \right] \overline{\exp\left[- \frac{1}{T} \int_0^t d \tau_1 V(x_1(\tau_1),\tau_1 ) - \frac{1}{T} \int_0^t d \tau_2 V(x_2(\tau_2),\tau_2 )\right]} }

  • Step 2: Using Wick's theorem, we obtain

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{Z(x,t)^2 } = \exp\left[ \frac{D t \delta_0}{T^2} \right]\int {\cal D} x_1\int {\cal D} x_2 \exp\left[- \int_0^t d \tau \frac{1}{2T}[(\partial_\tau x_1)^2+ (\partial_\tau x_2)^2 - \frac{D}{T^2} \delta^d[x_1(\tau)-x_2(\tau)]\right] }

  • Step 3: Changing coordinates** , we get

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{Z(x,t)^2} = (\overline{Z(x,t)})^2 \frac{\int_{u(0)=0}^{u(t)=0} {\cal D} u \exp\left[- \int_0^t d \tau \frac{1}{4T}(\partial_\tau u)^2- \frac{D}{T^2} \delta^d[u(\tau)]\right]}{\int_{u(0)=0}^{u(t)=0} {\cal D} u \exp\left[- \int_0^t d \tau \frac{1}{4T}(\partial_\tau u)^2\right]} }

Discussion

Hence, the quantity Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{Z(x,t)^2}/ (\overline{Z(x,t)})^2} can be computed.

  • The denominator is the free propagator and gives a contribution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sim (4 T t)^{d/2}} .
  • Let us define the numerator
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W(0,t)= \int_{u(0)=0}^{u(t)=0} {\cal D} u \exp\left[- \int_0^t d \tau \frac{1}{4T}(\partial_\tau u)^2- \frac{D}{T^2} \delta^d[u(\tau)]\right] }

Remark 1: From Valentina's lecture, remember that if

the partition function is self-averaging and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\ln Z(x,t)} =\ln\overline{Z(x,t)} } . The condition above is sufficient but not necessary. It is enough that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{Z(x,t)^2}/ (\overline{Z(x,t)})^2 <\text{const} } , when , to have the equivalence between annealed and quenched averages.

Remark 2: From Feynman-Kac we can write the following equation

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial_t W(x,t) =- \hat H W(x,t) }

Here the Hamiltonian reads:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat H= -2 T \nabla^2 - \frac{D}{T^2} \delta^d[u] }

The single particle potential is time independent and actractive .

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W(x,t) = \langle x|\exp\left( - \hat H t\right) |0\rangle }

At large times the behaviour is dominatated by the low energy part of the spectrum.

  • In Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\le 2} an actractive potential always gives a bound state. In particular the ground state has a negative energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_0 <0} . Hence at large times
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W(x,t) = e^{ |E_0| t} }

grows exponentially. This means that at all temperature, when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t\to \infty}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\ln Z(x,t)} \ll \ln\overline{Z(x,t)} }
  • For the low part of the spectrum is controlled by the strength of the prefactor Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{D}{T^2} } . At high temperature we have a continuum positive spectrum, at low temperature bound states exist. Hence, when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t\to \infty}

This transition, in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d =3 } , is between a high temeprature, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=0} phase and a low temeprature Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta>0} no RSB phase.