LBan-1: Difference between revisions
No edit summary |
No edit summary |
||
| Line 5: | Line 5: | ||
where the sum runs over nearest neighbors <math>\langle i, j \rangle</math>, and the couplings <math>J_{ij}</math> are independent and identically distributed (i.i.d.) Gaussian random variables with zero mean and unit variance. | where the sum runs over nearest neighbors <math>\langle i, j \rangle</math>, and the couplings <math>J_{ij}</math> are independent and identically distributed (i.i.d.) Gaussian random variables with zero mean and unit variance. | ||
The energy of a given configuration is a random quantity because each system corresponds to a different realization of the disorder. In an experiment, this means that each of us has a different physical sample; in a numerical simulation, it means that each of us has generated a different set of couplings <math>J_{ij}</math>. | |||
Revision as of 13:12, 2 August 2025
In a system with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} degrees of freedom, the number of configurations grows exponentially with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} . For simplicity, consider Ising spins that take two values, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_i = \pm 1} , located on a lattice of size Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d} dimensions. In this case, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N = L^d} and the number of configurations is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M = 2^N = e^{N \log 2}} .
In the presence of disorder, the energy associated with a given configuration becomes a random quantity. For instance, in the Edwards-Anderson model:
where the sum runs over nearest neighbors Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle i, j \rangle} , and the couplings are independent and identically distributed (i.i.d.) Gaussian random variables with zero mean and unit variance.
The energy of a given configuration is a random quantity because each system corresponds to a different realization of the disorder. In an experiment, this means that each of us has a different physical sample; in a numerical simulation, it means that each of us has generated a different set of couplings Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{ij}} .