L-4

From Disordered Systems Wiki
Jump to navigation Jump to search

Goal : final lecture on KPZ and directed polymers at finite dimension. We will show that for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d>2} a "glass transition" takes place.


KPZ : from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d=1} to the Cayley tree

We know a lot about KPZ, but still we have much to understand:

  • In Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d=1} we found Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=1/3} and a glassy regime present at all temperatures. The stationary solution of the KPZ equation describes, at long times, the fluctions of quantities like Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{\min}[x] - E_{\min}[x']} . However it does not identify the actual distribution of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{\min}} for a given Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} . In particular we have no idea from where Tracy Widom comes from.
  • In Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d=\infty} , there is an exact solution for the Cayley tree that predicts a freezing transition to an 1RSB phase (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=0} ).
  • In finite dimension, but larger than 1, there are no exact solutions. Numerical simulations find Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta >0} in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d=2} . The case Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d>2} is very interesting.

Let's do replica!

To make progress in disordered systems we have to go through the moments of the partition function. For simplicity we consider polymers starting in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} and ending in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} . We recall that

  • is a Gaussian field with
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{V(x,\tau)}=0, \quad \overline{V(x,\tau) V(x',\tau')} = D \delta^d(x-x') \delta(\tau-\tau') }
  • From the Wick theorem, for a generic Gaussian Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W } field we have

The first moment

The first moment of the partition function is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{Z_t[x,t] } =\int_{x(0)=0}^{x(t)=x} {\cal D} x(\tau) \exp\left[- \frac{1}{T} \int_0^t d \tau \frac{1}2(\partial_\tau x)^2\right] \overline{\exp\left[- \frac{1}{T} \int d \tau V(x(\tau),\tau ) \right]} }

Note that the term Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T^2 \overline{W^2} = \int d \tau_1 d\tau_2 \overline{V(x,\tau_1)V(x,\tau_2)}= D t \delta_0} has a short distance divergence due to the delta-function. Hence we can write:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{Z_t[x] } = \frac{1}{(2 \pi t T)^{d/2}}\exp\left[ -\frac{1}{2} \frac{ x^2}{t T} \right] \exp\left[ \frac{D t \delta_0}{2T^2} \right] }

The second moment

Exercise: L-4

  • Step 1: The second moment is
  • Step 2: Use Wick and derive:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{Z[x_t,t]^2 } = \exp\left[ \frac{D t \delta_0}{T^2} \right]\int {\cal D} x_1\int {\cal D} x_2 \exp\left[- \int_0^t d \tau \frac{1}{2T}[(\partial_\tau x_1)^2+ (\partial_\tau x_2)^2 - \frac{D}{T^2} \delta^d[x_1(\tau)-x_2(\tau)]\right] }
  • Step 3: Now change coordinate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X=(x_1+x_2)/2; \; u=x_1-x_2} and get:

Discussion

Hence, the quantity Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{Z[x_t,t]^2}/ (\overline{Z[x_t,t]})^2} can be computed.

  • The denominator Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{u(0)=0}^{u(t)=0} {\cal D} u \exp\left[- \int_0^t d \tau \frac{1}{4T}(\partial_\tau u)^2\right] } is the free propagator and gives a contribution

Remark 1: From T-I, remember that if

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\overline{Z[x_t,t]^2}}{ (\overline{Z[x_t,t]})^2}=1 }

the partition function is self-averaging and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\ln Z[x,t]} =\ln\overline{Z[x_t,t]} } . The condition above is sufficient but not necessary. It is enough that , when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t\to \infty} , to have the equivalence between annealed and quenched averages.

Remark II: From L-3, we derive using Feynman-Kac, the following equation

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial_t W(x,t) =- \hat H W(x,t) }

Now the Hamiltonian reads:

Now the Hamiltonian is time independent:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W(x,t) = \langle x|\exp\left( - \hat H t\rangle) |0\rangle }

At large times the behaviour is dominatate by the low energy part of the spectrum