T-2
In this set of problems, we use the replica method to study the equilibrium properties of a prototypical toy model of glasses, the spherical -spin model. In the spherical -spin model the configurations Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{\sigma}=(\sigma_1, \cdots, \sigma_N) } that the system can take satisfy the spherical constraint Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^N \sigma_i^2=N } , and the energy associated to each configuration is
where the coupling constants Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{i_1 \,i_2 \cdots i_p}} are independent random variables with Gaussian distribution with zero mean and variance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p!/ (2 N^{p-1}),} and is an integer.
Problem 1: the annealed free energy
In TD1, we defined the quenched free energy density as the quantity controlling the scaling of the typical value of the partition function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z } . The annealed free energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_{\rm ann} } instead controls the scaling of the average value of . It is defined by
Let us compute this quantity.
- Energy correlations. At variance with the REM, in the spherical Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} -spin the energies at different configurations are correlated. Show that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{E(\vec{\sigma}) E(\vec{\tau})}= N q(\vec{\sigma}, \vec{\tau})^p/2 + o(1) } , where is the overlap between the two configurations. Why an we say that for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p \to \infty } this model converges with the REM discussed in the previous TD?
- Energy contribution. Show that computing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{Z}} boils down to computing the average . Compute this average. Hint: if X is a centered Gaussian variable with variance Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma^2} , then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{e^{\alpha X}}=e^{\frac{\alpha^2 \sigma^2}{2} }} .
- Entropy contribution. The volume of a sphere of radius in dimension Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} is given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N^{\frac{N}{2}} \pi^{\frac{N}{2}}/(\frac{N}{2})!} . Use the large-N asymptotic of this to conclude the calculation of the annealed free energy.
Problem 2: the quenched free energy
- Heavy tails and concentration. ccc
- Inverse participation ratio. cccc