L-4

From Disordered Systems Wiki
Jump to navigation Jump to search

Goal : final lecture on KPZ and directed polymers at finite dimension. We will show that for a "glass transition" takes place.


KPZ : from 1d to the Cayley tree

We know a lot about KPZ, but there is still much to understand:

  • In , we have found and a glassy regime present at all temperatures. The stationary solution of the KPZ equation describes, at long times, the fluctuations of quantities such as . However, it does not determine the actual distribution of for a given . In particular, we have no clear understanding of the origin of the Tracy-Widom distribution.
  • In , an exact solution exists for the Cayley tree, predicting a freezing transition to a 1RSB phase ().
  • In finite dimensions greater than one, no exact solutions are available. Numerical simulations indicate in . The case remains particularly intriguing.

Let's do replica!

To make progress in disordered systems, we need to analyze the moments of the partition function. From Valentina's lecture, recall that if

then the partition function is self-averaging, and annealed and quenched averages are equivalent.The condition above is sufficient but not necessary. It is enough that

,

when , to ensure the equivalence between annealed and quenched averages.

In the following, we compute this quantity, which corresponds to a two-replica calculation. For simplicity, we consider polymers starting at and ending at . We recall that: