T-II-3

From Disordered Systems Wiki
Revision as of 12:16, 22 December 2023 by Ros (talk | contribs)
Jump to navigation Jump to search

Goal of these problems: In this set of problems, we compute the free energy of the spherical -spin model in the Replica Symmetric (RS) framework, and in the 1-step Replica Symmetry Broken (1-RSB) framework.


Key concepts:


The order parameters: overlaps, and their meaning

In the lectures, we have introduced the Edwards-Anderson order parameter

This quantity is a measure of ergodicity breaking: when ergodicity is broken, the system at equilibrium explores only a sub-part of the phase space; the Boltzmann measure clusters into pure states (labelled by ) with Gibbs weight , meaning that one can re-write the thermal averages of any observable as

In the Ising model at low temperature there are two pure states, , that correspond to positive and negative magnetization. In a mean-field spin glass, there are more than two pure states. The quantity measures the overlap between configurations belonging to the same pure state, that one expects to be the same for all states:

This non-zero in a spin-glass phase, but it is also different from zero in unfrustrated ferromagnets: in the low-T phase of an Ising model, it equals to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m^2} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} is the magnetization. One can generalize this and consider also the overlap between configurations in different pure states, and the overlap distribution:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_{\alpha \beta}= \frac{1}{N}\sum_i \langle \sigma_i \rangle_\alpha \langle \sigma_i \rangle_\beta, \quad \quad \quad {P}(q)= \sum_{\alpha, \beta} \omega_\alpha\, \omega_\beta\, \delta(q- q_{\alpha \beta}) }

The disorder average of quantities can be computed within the replica formalism, and one finds:

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{ab}^{SP}} are the saddle point values of the overlap matrix introduced in Problem 2.2. The solution of the saddle point equations for the overlap matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q} thus contain the information on whether spin glass order emerges, which corresponds to having a non-trivial distribution . In the Ising case, a low temperature one has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_{\alpha \alpha}=m^2} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_{\alpha \neq \beta}=-m^2} , and thus has two peaks at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pm m^2} .


Problem 3.1: the RS (Replica Symmetric) calculation

We go back to the saddle point equations for the spherical Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} -spin model derived in the previous problems. Let us consider the simplest possible ansatz for the structure of the matrix Q, that is the Replica Symmetric (RS) ansatz:

Under this assumption, there is a unique saddle point variable, that is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0} .


  1. Check that the inverse of the overlap matrix is

    Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q^{-1}=\begin{pmatrix} \alpha & \beta &\beta \cdots& \beta\\ \beta & \alpha &\beta \cdots &\beta\\ &\cdots& &\\ \beta & \beta &\beta \cdots &\alpha \end{pmatrix} \quad \quad \text{with} \quad \alpha= \frac{1}{1-q_0} \quad \text{and} \quad \beta=\frac{-1}{(1-q_0)[1+(n-1)q_0]} }

    Compute the saddle point equation for in the limit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \to 0} , and show that this equation admits always the solution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0= 0} : why is this called the paramagnetic solution?


  1. Compute the free energy corresponding to the solution , and show that it reproduces the annealed free energy. Do you have an interpretation for this?


  1. Overlpa interpretation


Problem 3.2: the 1-RSB (Replica Symmetry Broken) calculation

In the previous problem, we have chosen a certain parametrization of the overlap matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q} , which corresponds to assuming that typically all the copies of the systems fall into configurations that are at overlap Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0} with each others, no matter what is the pair of replicas considered. This assumption is however not the good one at low temperature. We now assume a different parametrisation, that corresponds to breaking the symmetry between replicas: in particular, we assume that typically the replicas fall into configurations that are organized in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n/m} groups of size Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} ; pairs of replicas in the same group are more strongly correlated and have overlap , while pairs of replicas belonging to different groups have a smaller overlap Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0<q_1} . This corresponds to the following block structure for the overlap matrix:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q=\begin{pmatrix} 1 & q_1 &q_1& q_0 & q_0 \cdots& q_0\\ q_1 & 1 &q_1& q_0 & q_0 \cdots& q_0\\ q_1 & q_1 &1& q_0 & q_0 \cdots& q_0\\ \cdots\\ \cdots\\ \cdots\\ q_0 & q_0 \cdots& q_0&1 & q_1 &q_1\\ q_0 & q_0 \cdots& q_0&q_1 & 1 &q_1\\ q_0 & q_0 \cdots& q_0&q_1 & q_1 &1\\ \end{pmatrix} }

Here we have three parameters: (in the formula above, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m=3} ).



  1. Using that

    Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log \det Q=n\frac{m-1}{m} \log (1-q_1)+ \frac{n-m}{m} \log [m(q_1-q_0) + 1-q_1]+ \log \left[nq_0+ m(q_1-q_0)+ 1-q_1 \right]}

    show that the free energy now becomes:

    Under which limit this reduces to the replica symmetric expression?


  1. Compute the saddle point equations with respect to the parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0, q_1 } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m } are. Check that is again a valid solution of these equations, and that for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_0=0} the remaining equations reduce to:

    Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (m-1) \left[ \frac{\beta^2}{q}p q_1^{p-1}-\frac{1}{m}\frac{1}{1-q_1}+ \frac{1}{m}\frac{1}{1+ (m-1)q_1} \right]=0, \quad \quad \frac{\beta^2}{2} q_1^p + \frac{1}{m^2}\log \left( \frac{1-q_1}{1+ (m-1)q_1}\right)+ \frac{q_1}{m [1+(m-1)q_1]}=0 }

    How does one recover the paramagnetic solution?


  1. We now look for a solution different from the paramagnetic one. To begin with, we set to satisfy the first equation, and look for a solution of

    Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\beta^2}{2} q_1^p + \log \left(1-q_1\right)+ q_1=0 }

    Plot this function for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p=3} and different values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta} , and show that there is a critical temperature where a solution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q_1 \neq 0} appears: what is the value of this temperature (determined numerically)?