L-4

From Disordered Systems Wiki
Revision as of 10:18, 11 February 2024 by Rosso (talk | contribs)
Jump to navigation Jump to search

Goal : final lecture on KPZ and directed polymers at finite dimension. We will show that for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d>2} a "glass transition" takes place.


KPZ : from to the Cayley tree

We know a lot about KPZ, but still we have much to understand:

  • In Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d=1} we found Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=1/3} and a glassy regime present at all temperatures. Moreover, the stationary solution tell us that is a Brownian motion in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} . However this solution does not identify the actual distribution of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{\min}} for a given . In particular we have no idea from where Tracy Widom comes from.
  • In Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d>1} the exponents are not known. There is an exact solution for the Cayley tree (infinite dimension) that predicts a freezing transition to an 1RSB phase (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=0} ).

Let's do replica!

To make progress in disordered systems we have to go through the moments of the partition function. For simplicity we consider polymers starting in and ending in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_t} . We recall that

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x,\tau)} is a Gaussian field with
  • From the Wick theorem, for a generic Gaussian Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W } field we have
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\exp(W)} = \exp\left[\overline{W} +\frac{1}{2} (\overline{W^2}-\overline{W}^2)\right] }

The first moment of the partition function is

Note that the term Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T^2 \overline{W^2} = \int d \tau_1 d\tau_2 \overline{V(x,\tau_1)V(x,\tau_2)}= D t \delta_0} has a short distance divergence due to the delta-function. Hence we can write:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{Z_t[x_1] } = \frac{1}{(2 \pi t T)^{d/2}}\exp\left[ -\frac{d}{2} \frac{ x_t^2}{t T} \right] \exp\left[ \frac{D t \delta_0}{2T^2} \right] }

Exercise L4-A: the second moment

  • Step 1:

Now you can change coordinate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X=(x_1+x_2)/2; \; u=x_1-x_2} and get:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{Z[x_t,t]^2} = (\overline{Z[x_t,t]})^2 \frac{\int_{u(0)=0}^{u(t)=0} {\cal D} u \exp\left[- \int_0^t d \tau \frac{1}{4T}(\partial_\tau u)^2+ \frac{D}{T^2} \delta[u(\tau)]\right]}{\int_{u(0)=0}^{u(t)=0} {\cal D} u \exp\left[- \int_0^t d \tau \frac{1}{4T}(\partial_\tau u)^2\right]} }
  • Step 2: Hence, the quantity can be computed from the spectrum of the following Hamiltonian
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H= 2 T \nabla^2 + \frac{D}{T^2} \delta[u] }