Goal : final lecture on KPZ and directed polymers at finite dimension. We will show that for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d>2}
a "glass transition" takes place.
Directed Polymer in finite dimension
State of the Art
The directed polymer in random media belongs to the KPZ universality class. The behavior of this system is well understood in one dimension and in the mean-field case, more precisely for the directed polymer on the Cayley tree. In particular:
- In
, we have
and a glassy regime present at all temperatures. The model is integrable through a non-standard Bethe Ansatz, and the distribution of
for a given boundary condition is of the Tracy–Widom type.
- In
, for the Cayley tree, an exact solution exists, predicting a freezing transition to a 1RSB phase (
).
In finite dimensions greater than one, no exact solutions are available. Numerical simulations indicate
in
and a glassy regime present at all temperatures. The case
remains particularly intriguing.
First Moment
Due to the short-distance divergence of
,
Hence,
Second Moment
For the second moment we need two replicas:
Step 1
Step 2: Wick’s Theorem
Step 3: Change of Coordinates
Let
and
. Then:
Here,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_{free}^2(x,t,T) = Z_{free}(X=x,t,T/2) \, Z_{free}(u=0,t,2T), \qquad Z_{free}(u=0,t,2T) = (4 \pi T t)^{d/2}. }
Two-Replica Propagator
Define the propagator:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W(0,t) = \int_{u(0)=0}^{u(t)=0} \mathcal{D}u \exp\Big[-\int_0^t d\tau \frac{1}{4T} (\partial_\tau u)^2 - \frac{D}{T^2} \delta^d[u(\tau)]\Big]. }
By the Feynman-Kac formula:
For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d > 2}
, The low-energy behavior depends on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D/T^2}
:
Let's do replica!
To make progress in disordered systems, we need to analyze the moments of the partition function. The first moment provide the annealed average and the second moment tell us about the fluctuantions. In particular, the partition function is self-averaging if
In this case annealed and the quenched average coincides in the thermodynamic limit. This strict condition is sufficient, but not necessary. What is necessary is to show that for large t
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\overline{Z(x,t)^2}}{ (\overline{Z(x,t)})^2} < \text{const} }
,
In the following, we compute these moments via a replica calculation, considering polymers starting at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0}
and ending at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x}
.
To proceed, we only need two ingredients:
- The random potential Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x,\tau)}
is a Gaussian field characterized by
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{V(x,\tau)} = 0, \qquad \overline{V(x,\tau) V(x',\tau')} = D \, \delta^d(x-x') \, \delta(\tau - \tau'). }
- Since the disorder is Gaussian, averages of exponentials can be computed using Wick’s theorem:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\exp(W)} = \exp\!\Big[\overline{W} + \frac{1}{2}\big(\overline{W^2} - \overline{W}^2\big)\Big], }
for any Gaussian random variable Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W}
.
These two properties are all we need to carry out the replica calculation below.