LBan-1

From Disordered Systems Wiki
Revision as of 14:19, 2 August 2025 by Rosso (talk | contribs)
Jump to navigation Jump to search

In a system with degrees of freedom, the number of configurations grows exponentially with . For simplicity, consider Ising spins that take two values, , located on a lattice of size in dimensions. In this case, and the number of configurations is .

In the presence of disorder, the energy associated with a given configuration becomes a random quantity. For instance, in the Edwards-Anderson model:

where the sum runs over nearest neighbors , and the couplings are independent and identically distributed (i.i.d.) Gaussian random variables with zero mean and unit variance.

The energy of a given configuration is a random quantity because each system corresponds to a different realization of the disorder. In an experiment, this means that each of us has a different physical sample; in a numerical simulation, it means that each of us has generated a different set of couplings .


To illustrate this, consider a single configuration, for example the one where all spins are up. The energy of this configuration is given by the sum of all the couplings between neighboring spins:

Since the the couplings are random, the energy associated with this particular configuration is itself a Gaussian random variable, with zero mean and a variance proportional to the number of terms in the sum — that is, of order . The same reasoning applies to each of the configurations. So, in a disordered system, the entire energy landscape is random and sample-dependent.