L-1
Spin glass Transition
Experiments
Parlare dei campioni di rame dopati con il magnesio, marino o no: trovare due figure una di suscettivita e una di calore specifico, prova della transizione termodinamica.
Edwards Anderson model
We consider for simplicity the Ising version of this model.
Ising spins takes two values and live on a lattice of sitees . The enregy is writteen as a sum between the nearest neighbours <i,j>:
Edwards and Anderson proposed to study this model for couplings Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J } that are i.i.d. random variables with zero mean. We set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi(J)} the coupling distribution indicate the avergage over the couplings called disorder average, with an overline:
It is crucial to assume Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bar{ J}=0 } , otherwise the model displays ferro/antiferro order. We sill discuss two distributions:
- Gaussian couplings: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi(J) =\exp\left(-J^2/2\right)/\sqrt{2 \pi}}
- Coin toss couplings, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J= \pm 1 } , selected with probability Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1/2 } .
Edwards Anderson order parameter
The SK model
Sherrington and Kirkpatrik considered the fully connected version of the model with Gaussian couplings:
At the inverse temperature Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta } , the partion function of the model is
Here Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_\alpha } is the energy associated to the configuration Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha } . This model presents a thermodynamic transition at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta_c=?? } .
Random energy model
The solution of the SK is difficult. To make progress we first study the radnom energy model (REM) introduced by B. Derrida.
Derivation of the model
The REM neglects the correlations between the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^N } configurations and assumes the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{\alpha} } as iid variables.
- Show that the energy distribution is
and determine Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma^2}
The Solution
Extreme value stattics for Gaussian variables
Number
Bibliography
Bibliography
- Theory of spin glasses, S. F. Edwards and P. W. Anderson, J. Phys. F: Met. Phys. 5 965, 1975