Motifs emerge from function in model gene regulatory networks

Z. Burda 1, A. Krzywicki 2, O. C. Martin 3, 4, M. Zagorski 1

Proceedings of the National Academy of Sciences 108 (2011) 17263

Gene regulatory networks arise in all living cells, allowing the control of gene expression patterns. The study of their topology has revealed that certain subgraphs of interactions or ‘motifs’ appear at anomalously high frequencies. We ask here whether this phenomenon may emerge because of the functions carried out by these networks. Given a framework for describing regulatory interactions and dynamics, we consider in the space of all regulatory networks those that have a prescribed function. Monte Carlo sampling is then used to determine how these functional networks lead to specific motif statistics in the interactions. In the case where the regulatory networks are constrained to exhibit multi-stability, we find a high frequency of gene pairs that are mutually inhibitory and self-activating. In contrast, networks constrained to have periodic gene expression patterns (mimicking for instance the cell cycle) have a high frequency of bifan-like motifs involving four genes with at least one activating and one inhibitory interaction.

  • 1. Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center,
    Jagellonian University
  • 2. Laboratoire de Physique Théorique d’Orsay (LPT),
    CNRS : UMR8627 – Université Paris XI – Paris Sud
  • 3. Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS),
    CNRS : UMR8626 – Université Paris XI – Paris Sud
  • 4. Génétique Végétale (GV),
    CNRS : UMR8120 – Institut national de la recherche agronomique (INRA) : UMR0320 – Université Paris XI – Paris Sud – AgroParisTech
Retour en haut