Mechanotransduction in Vascular Endothelial Cells: Mechanisms and Implications
Abdul Barakat (École Polytechnique)
The ability of arterial endothelial cells, the cells lining the inner surfaces of blood vessels, to respond to mechanical forces associated with blood flow is essential for normal vascular function. Abnormalities in endothelial cell mechanotransduction play a critical role in the development and progression of cardiovascular disease. The mechanisms governing how endothelial cells sense mechanical forces on their surfaces and how they subsequently transmit these forces within the intracellular space remain poorly understood. In this talk, I will present experimental and computational results in support of a central role for the cellular cytoskeleton in force transmission within endothelial cells. Because endothelial cells are often simultaneously exposed to multiple biophysical stimuli, I will show data that demonstrate that endothelial cells integrate biophysical stimuli derived from simultaneous apical cellular stimulation by flow and basal stimulation by nano-scale substrate patterning. Finally, I will discuss the role of proteins that link the cytoskeleton to the nucleus in modulating mechanotransduction in endothelial cells.