The mechanics of active and passive cellular assemblies: How biomimetic reconstitution can help to understand living cell
Timo Betz (Institut Curie – Paris)
Understanding the intriguing complexity of living systems is one of the main driving forces of science. To gain insight we use biomimetic systems that reconstitute well defined cellular assemblies and compare these to the living system. Our main interests are the mechanical properties and the generation of forces, both mediated by the cytoskeleton and its interaction with the plasma membrane. Recent advances allow to mimic structures such as the actin cortex, sparse actin networks and actin bundles, and we use optical tweezers to quantify the mechanical properties of these structures and to compare them to living cells. While sparse actin networks and polymerizing actin bundles show rather passive behavior, we apply the same measurement methods to living cells such as cell blebs and red blood cells which allow to study the out-of-equilibrium mechanics of these systems, and to determine the timescale at which the system’s activity becomes evident.