LBan-II

From Disordered Systems Wiki
Jump to navigation Jump to search

Introduction: Interfaces and Directed Polymers

The physical properties of many materials are governed by manifolds embedded in them. Examples include: dislocations in crystals, domain walls in ferromagnets or vortex lines in superconductors. We fix the following notation: - : spatial dimension of the embedding medium – : internal dimension of the manifold – : dimension of the displacement (or height) field

These satisfy the relation:

We focus on two important cases:

Directed Polymers (d = 1)

The configuration is described by a vector function: , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} is the internal coordinate. The polymer lives in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D = 1 + N} dimensions.

Examples: vortex lines, DNA strands, fronts.

Although polymers may form loops, we restrict to directed polymers, i.e., configurations without overhangs or backward turns.

Interfaces (N = 1)

The interface is described by a scalar height field: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(\vec{r}, t)} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{r} \in \mathbb{R}^d} is the internal coordinate and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} represents time.

Examples: domain walls and propagating fronts

Again we neglect overhangs or pinch-off: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(\vec{r}, t)} is single-valued

Note that using our notation the 1D front is both an interface and a directed polymer

Directed Polymers on a lattice

Sketch of the discrete Directed Polymer model. At each time the polymer grows either one step left either one step right. A random energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(\tau,x)} is associated at each node and the total energy is simply Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E[x(\tau)] =\sum_{\tau=0}^t V(\tau,x)} .


We introduce a lattice model for the directed polymer (see figure). In a companion notebook we provide the implementation of the powerful Dijkstra algorithm. Dijkstra allows to identify the minimal energy among the exponential number of configurations Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(\tau)}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{\min} = \min_{x(\tau)} E[x(\tau)]. }

We are also interested in the ground state configuration Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{\min}(\tau) } . For both quantities we expect scale invariance with two exponents Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta, \zeta} for the energy and for the roughness

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{\min} = c_\infty t + \kappa_1 t^{\theta}\chi, \quad x_{\min}(t/2)) \sim \kappa_2 t^{\zeta} \tilde \chi }

Universal exponents: Both Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta, \zeta } are Independent of the lattice, the disorder distribution, the elastic constants, or the boudanry conditions.

Non-universal constants: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_\infty,\kappa_1, \kappa_2 } are of order 1 and depend on the lattice, the disorder distribution, the elastic constants... However Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_\infty } is independent on the boudanry conditions!

Universal distributions: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi, \tilde \chi } are instead universal, but depends on the boundary condtions. Starting from 2000 a magic connection has been revealed between this model and the smallest eigenvalues of random matrices. In particular I discuss two different boundary conditions:

  • Droplet: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(\tau=0) = x(\tau=t) = 0 } . In this case, up to rescaling, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} is distributed as the smallest eigenvalue of a GUE random matrix (Tracy Widom distribution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_2(\chi) } )
  • Flat: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(\tau=0) = 0 } while the other end Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(\tau=t) } is free. In this case, up to rescaling, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} is distributed as the smallest eigenvalue of a GOE random matrix (Tracy Widom distribution Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_1(\chi) } )

Entropy and scaling relation

It is useful to compute the entropy

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Entropy}= \ln\binom{t}{\frac{t-x}{2}} \approx t \ln 2 -\frac{x^2}{2 t} +O(x^4) }

From which one could guess from dimensional analysis

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=2 \zeta-1 }

This relation is actually exact also for the continuum model.

Directed polymers in the continuum

We now reanalyze the previous problem in the presence of quenched disorder. Instead of discussing the case of interfaces, we will focus on directed polymers. Let us consider polymers Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(\tau)} of length Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} . The energy associated with a given polymer configuration can be written as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E[x(\tau)] = \int_0^t d\tau \, \left[ \frac{1}{2} \left( \frac{dx}{d\tau} \right)^2 + V(x(\tau), \tau) \right] }

The first term describes the elastic energy of the polymer, while the second one is the disordered potential, which we assume to be

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{ V(x,\tau) } = 0, \qquad \overline{ V(x,\tau) V(x',\tau') } = D \, \delta(x-x') \, \delta(\tau-\tau') . }

where 'D' is the disorder strength.


Polymer partition function and propagator of a quantum particle

Let us consider polymers starting in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 } , ending in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x } and at thermal equilibrium at temperature Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} . The partition function of the model writes as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z(x,t) =\int_{x(0)=0}^{x(t)=x} {\cal D} x(\tau) \exp\left[- \frac{1}{T} \int_0^t d \tau \frac{1}2(\partial_\tau x)^2 +V(x(\tau),\tau)\right] }

Here, the partition function is written as a sum over all possible paths, corresponding to all possible polymer configurations that start at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} and end at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , weighted by the appropriate Boltzmann factor.


Let's perform the following change of variables: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau=i t' } . We also identifies Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde t= -i t } as the time.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z(x,\tilde t) =\int_{x(0)=0}^{x(\tilde t)=x} {\cal D} x(t') \exp\left[ \frac{i}{\hbar} \int_0^{\tilde t} d t' \frac{1}2(\partial_{t'} x)^2 -V(x(t'),t')\right] }

Note that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S[x]= \int_0^{\tilde t} d t' \frac{1}2(\partial_{t'} x)^2 -V(x(t'),t')} is the classical action of a particle with kinetic energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}2(\partial_\tau x)^2} and time dependent potential Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x(\tau),\tau)} , evolving from time zero to time Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde t} . From the Feymann path integral formulation, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z[x,\tilde t]} is the propagator of the quantum particle.


Feynman-Kac formula

Let's derive the Feyman Kac formula for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z(x,t)} in the general case:

  • First, focus on free paths and introduce the following probability
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P[A,x,t] =\int_{x(0)=0}^{x(t)=x} {\cal D} x(\tau) \exp\left[- \frac{1}{T} \int_0^t d \tau \frac{1}2(\partial_\tau x)^2 \right] \delta\left( \int_0^t d \tau V(x(\tau),\tau)-A \right) }
  • Second, the moments generating function
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_p(x ,t) = \int_{-\infty}^\infty d A e^{-p A} P[A,x,t] =\int_{x(0)=0}^{x(t)=x} {\cal D} x(\tau) e^{-\frac{1}{T} \int_0^t d \tau \frac{1}2(\partial_\tau x)^2 -p \int_0^t d \tau V(x(\tau),\tau)} }
  • Third, consider free paths evolving up to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t+dt} and reaching Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x}  :
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_p(x,t+dt)= \left\langle e^{-p \int_0^{t+dt} d \tau V(x(\tau),\tau)}\right\rangle= \left\langle e^{-p \int_0^{t} d \tau V(x(\tau),\tau)}\right\rangle e^{-p V(x,t) d t } =[1 -p V(x,t) d t +\dots]\left\langle Z_p(x-\Delta x,t) \right\rangle_{\Delta x} }

Here Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \ldots \rangle} is the average over all free paths, while Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \ldots \rangle_{\Delta x}} is the average over the last jump, namely Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \Delta x \rangle=0 } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \Delta x^2 \rangle=T d t } .

  • At the lowest order we have
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_p(x,t+dt)= Z_p(x,t) +dt \left[ \frac{T}{2} \partial_x^2 Z_p -p V(x,t) Z_p \right] +O(dt^2) }

Replacing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p=1/T} we obtain the partition function is the solution of the Schrodinger-like equation:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial_t Z(x,t) =- \hat H Z = - \left[ -\frac{T}{2}\frac{d^2 }{d x^2} + \frac{V(x,\tau)}{T}\right] Z(x,t) }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z[x,t=0]=\delta(x) }

Remarks

Remark 1:

This equation is a diffusive equation with multiplicative noise Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x,\tau)/T} . Edwards Wilkinson is instead a diffusive equation with additive noise.

Remark 2: This hamiltonian is time dependent because of the multiplicative noise Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x,\tau)/T} . For a time independent hamiltonian, we can use the spectrum of the operator. In general we will have to parts:

  • A discrete set of eigenvalues Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_n} with the eigenstates Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_n(x)}
  • A continuum part where the states Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_E(x)} have energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E} . We define the density of states Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho(E)} , such that the number of states with energy in (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E, E + dE} ) is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho(E) dE } .

In this case Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z[x,t] } can be written has the sum of two contributions:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z[x,t] = \left( e^{- \hat H t} \right)_{0 \to x}= \sum_n \psi_n(0) \psi_n^*(x) e^{- E_n t} + \int_0^\infty dE \, \rho(E) \psi_E(0) \psi_E^*(x) e^{- E t}. }

In absence of disorder, one can find the propagator of the free particle, that, in the original variables, writes:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_{\text{free}}(x,t)=\frac{e^{-x^2/(2Tt)}}{\sqrt{2 \pi Tt}} }