TBan-I

From Disordered Systems Wiki
Jump to navigation Jump to search

In the following exercises, we will use the notation from extreme value statistics as introduced in the course.

Exercise 1: The Gaussian case

Let us analyze in detail the case of a Gaussian distribution with zero mean and variance . Using integration by parts, we can write :

The asymptotic expansion for  is :


In general, the variable is distributed according to an M-independent distribution.

It is possible to generalize this result and classify the scaling forms into the Gumbel universality class:

  • Characteristics:
    • Applies when the tails of decay faster than any power law.
    • Examples: the Gaussian case discussed here or exponential distributions .
  • Scaling Form:


Exercise 2: The Weakest Link and the Weibull Distribution

Consider a chain of length subjected to a tensile force . Define as the force required to break the chain. The goal of this exercise is to determine how depends on and to characterize its sample-to-sample fluctuations. Throughout the exercise, you work in the limit of large .


Let denote the strengths of the individual links. Assume that these are positive, identically distributed, and independent random variables. Consider the Gamma distribution with shape parameter and the Gamma function:

Questions:

  • Compute the typical value and discuss its dependence on .


  • According to extreme value theory, the probability that the weakest link is smaller than is

Use the change of variable with and to find an -independent distribution.

Exercise 3: number of states above the minimum

Definition of :Given a realization of the random energies , define

that is, the number of random variables lying above the minimum but less than . This is itself a random variable. We are interested in its mean value:

The Final goal is to show that, for large M (when the extremes are described by the Gumbel distribution), you have:

Step 1: Exact manipulations: You start from the exact expression for the probability of states in the interval:

To compute , you must sum over . Use the identity

to arrive at the form:

where .

Step 2: the Gumbel limit So far, no approximations have been made. To proceed, we use and its asymptotics Gumbel form:

where .

The main contribution to the integral comes from the region near , where .


Compute the integral and verify that you obtain: