TBan-II

From Disordered Systems Wiki
Jump to navigation Jump to search

Thermal Interfaces

The dynamics is overdamped, so that we can neglect the inertial term. The Langevin equation of motion is

th(r,t)=μδEpotδh(r,t)+η(r,t)

The first term δEpot/δh(r,t) is the elastic force trying to smooth the interface, the mobility μ is the inverse of the viscosity. The second term is the Langevin noise. It is Guassian and defined by

η(r,t)=0,η(r,t)η(r,t)=2dDδd(rr)δ(tt)

The symbol indicates the average over the thermal noise and the diffusion constant is fixed by the Einstein relation D=μKBT. We set μ=KB=1

The potential energy of surface tension (ν is the stiffness) can be expanded at the lowest order in the gradient:

Epotconst.+ν2ddr(h)2

Hence, we have the Edwards Wilkinson equation:

th(r,t)=ν2h(r,t)+η(r,t)

Scaling Invariance

The equation enjoys of a continuous symmetry because h(r,t) and h(r,t)+c cannot be distinguished. This is a condition of scale invariance:

h(br,bzt)inlawbαh(r,t)

Here z,α are the dynamic and the roughness exponent respectively. From dimensional analysis

bαzth(r,t)=bα22h(r,t)+bd/2z/2η(r,t)

From which you get z=2 in any dimension and a rough interface below d=2 with α=(2d)/2.

Width of the interface

Consider a 1-dimensional line of size L with periodic boundary conditions. We consider the width square of the interface

w2(t)=[0LdrL(h(r,t)0LdrLh(r,t))]2

It is useful to introduce the Fourier modes:

h^q(t)=1L0Leiqrh(r,t),h(r,t)=qeiqrh^q(t)

Here q=2πn/L,n=,1,0,1, and recall 0Ldreiqr=Lδq,0. using de Parseval theorem for the Fourier series

w2(t)=q0|h^q(t)|2=q0(h^q(t)h^q(t))2

In the last step we used that h^q*(t)=h^q(t).

Solution in the Fourier space

show that the EW equation writes

th^q(t)=νq2h^q(t)+ηq(t),withηq1(t)ηq2(t)=2TLδq1,q2δ(tt)

The solution of this first order linear equation writes

h^q(t)=h^q(0)eνq2t+0tdseνq2(ts)ηq(s)
  • Assume that the interface is initially flat, namely h^q(0)=0. Show that
h^q(t)h^q(t)={T(1e2νq2t)Lνq2,q0,2TLt,q=0.
  • The mean width square grows at short times and saturates at long times:
w2(t)=TLνq01e2νq2tq2={T2tπν,tL2,TνL12,tL2.