TBan-I: Difference between revisions

From Disordered Systems Wiki
Jump to navigation Jump to search
Line 21: Line 21:
To compute <math>\overline{n(x)}</math>, you must sum over <math>k</math>.
To compute <math>\overline{n(x)}</math>, you must sum over <math>k</math>.
Use the identity
Use the identity
The starting point is the definition of the key quantity
<center><math> \text{Prob}[n(x) = k] = M \binom{M-1}{k} \int_{-\infty}^\infty dE \; p(E) [P(E+x) - P(E)]^{k} \left(1-P(E+x)\right)^{M - k - 1} </math></center>
Use the following identity to sum over <math>k</math>:
<center><math> \sum_{k=0}^{M-1} k \binom{M-1}{k} (A-B)^k B^{M-1-k} = (A-B)\frac{d}{dA} \sum_{k=0}^{M-1} \binom{M-1}{k} (A-B)^k B^{M-1-k} = (M-1)(A-B)A^{M-2} </math></center>
<center><math> \sum_{k=0}^{M-1} k \binom{M-1}{k} (A-B)^k B^{M-1-k} = (A-B)\frac{d}{dA} \sum_{k=0}^{M-1} \binom{M-1}{k} (A-B)^k B^{M-1-k} = (M-1)(A-B)A^{M-2} </math></center>
to arrive at the form:
to arrive at the form:

Revision as of 13:58, 31 August 2025

Nei seguente esercizio useremo le notazioni della statistica dei valori estremi usate nel corso.

exercise 1: La distribuzione di Gumbel

esercizio 2: The weakest link

Exercise 3: number of states above the minimum

Definition of :Given a realization of the random energies , define

that is, the number of random variables lying above the minimum but less than . This is itself a random variable. We are interested in its mean value:

The Final goal is to show that for large 'M', when the extremes are described by the Gumbel distribution :

Step 1: Exact manipulations

To compute , you must sum over . Use the identity

to arrive at the form:


Step 2: the Gumbel limit So far, no approximations have been made. To proceed, we use and its asymptotics Gumbel form: