T-8: Difference between revisions

From Disordered Systems Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<!--<strong>Goal:</strong>  in this final set of problems, we discuss the interplay between localization and glassiness, by connecting the solution to the Anderson problem on the Bethe lattice with the statistical physics problem of a directed polymer in random media on trees.
 
 
 
 
<strong>Goal:</strong>  in this final set of problems, we discuss the interplay between localization and glassiness, by connecting the solution to the Anderson problem on the Bethe lattice with the statistical physics problem of a directed polymer in random media on trees.
<br>
<br>
<strong>Techniques: </strong>   
<strong>Techniques: </strong>   
Line 5: Line 9:




=== Problem 7.2:  localization-delocalization transition on the Bethe lattice ===
We now focus on the self energies, since the criterion for localization is given in terms of these quantities. In this Problem we will determine for which values of parameters localization is stable, estimating the critical value of disorder where the transition to a delocalised phase occurs.
<ol>
<li><em> The “localized" solution. </em> We set <math> z=E+ i \eta </math> and <math> \sigma^{\text{cav}}_{a}(z)= R_a(z) -i \Gamma_a(z)</math>. Show that the cavity equation for the self-energies is equivalent to the following pair of coupled equations:
<center>
<math>
\Gamma_a= \sum_{b \in \partial a} t_{ab}^2 \frac{\Gamma_b + \eta}{(E- \epsilon_b - R_b)^2+ (\Gamma_b +\eta)^2}, \quad \quad R_a =  \sum_{b \in \partial a} t_{ab}^2 \frac{E- \epsilon_b - R_b}{(E- \epsilon_b - R_b)^2+ (\Gamma_b +\eta)^2}
</math>
</center>
Justify why the solution corresponding to localization, <math> \Gamma_a=0 </math>, is always a solution when <math> \eta \to 0 </math>; moreover, in the localized phase when <math> \eta </math> is finite but small one has <math> \Gamma_a \sim O(\eta) </math>. How can one argue that this solution has to be discarded, i.e. that delocalisation occurs?
</li><br>
<li><em> Imaginary approximation and distributional equation. </em> We consider the equations for <math> \Gamma_a </math> and neglect the terms <math> R_b </math> in the denominators, which couple the equations to those for the real parts of the self energies (“imaginary” approximation). Moreover, we assume to be in the localized phase, where <math> \Gamma_a \sim \eta \ll 1 </math>. Finally, we set <math> t_{ab} \equiv t </math> and <math> E=0 </math> for simplicity. Show that under these assumptions the probability density for the imaginary part, <math> P_\Gamma(\Gamma)</math>, satisfies
<center>
<math>
P_\Gamma(\Gamma)= \int \prod_{b=1}^k d\epsilon_b\,p(\epsilon_b)\int  \prod_{c=1}^k d\Gamma_b \, P_\Gamma(\Gamma_b) \delta \left(\Gamma - t^2 \sum_{b \in \partial a} \frac{\Gamma_b + \eta}{ \epsilon_b^2}  \right)
</math>
</center>
Show that the Laplace transform of this distribution, <math> \Phi(s)=\int_0^\infty d\Gamma e^{-s \Gamma} P_\Gamma(\Gamma) </math>, satisfies
<center>
<math>
\Phi(s)= \left[ \int d\epsilon\, p(\epsilon) e^{-\frac{s t^2 \eta}{\epsilon^2}} \Phi \left(\frac{s t^2 }{\epsilon^2} \right)  \right]^k
</math>
</center>
</li><br>
<li><em> The stability analysis. </em> We now wish to check the stability of our assumption to be in the localized phase,  <math> \Gamma_a \sim \eta \ll 1 </math>, which led to the identity above for <math> \Phi(s) </math>. Our assumption is that the typical value of <math> \Gamma_a </math> is small, except for cases in which one of the descendants <math> b </math> is such that <math> \epsilon_b </math> is very small, in which case <math> \Gamma_a \sim 1/ \epsilon_b^2 </math>.
<ul>
<li> Show that if <math> \Gamma \sim 1/ \epsilon^2 </math> and <math>p(\epsilon)</math> is not gapped around zero, then <math>P_\Gamma(\Gamma) \sim \Gamma^{-3/2}</math>, i.e. the distribution has tails contributed by these events in which the local fields happen to be very small.  </li>
<li> Assume more generally that  <math>P_\Gamma(\Gamma) \sim \Gamma^{-\alpha}</math> for large <math> \Gamma </math> and <math> \alpha \in [1, 3/2]</math>. Show that this corresponds to <math> \Phi(s) \sim 1- A |s|^\beta </math> for <math> s </math> small, with <math> \beta= \alpha-1 \in [0, 1/2] </math>.  </li>
<li>  Show that the equation for <math> \Phi(s) </math> gives for <math> s </math> small <math>1- A s^\beta =1- A k \int d\epsilon \, p(\epsilon) \frac{s^\beta t^{2 \beta}}{\epsilon^{2 \beta}}+ o(s^\beta) </math>, and therefore this is consistent provided that there exists a <math> \beta \in [0, 1/2] </math> solving
<center>
<math>
1=k \int d\epsilon \, p(\epsilon) \left(\frac{t}{\epsilon}\right)^{2 \beta} \equiv k I(\beta).
</math>
</center> </li>
</ul>
</li><br>
<li><em> The critical disorder. </em> Consider now local fields <math> \epsilon </math> taken from a uniform distribution in <math> [-W/2, W/2] </math>.  Compute <math> I(\beta) </math> and show that it is non monotonic, with a local minimum <math> \beta^* </math> in the interval <math> [0, 1/2]</math>. Show that  <math> I(\beta^*) </math> increases as the disorder is made weaker and weaker, and thus the transition to delocalisation occurs at the critical value of disorder when  <math> I(\beta^*)=k^{-1} </math>. Show that this gives
<center>
<math>
W_c = t \, 2 k e \log \left( \frac{W_c}{2 t}\right) \sim  t \, 2 k e \log \left(k\right)
</math>
</center>
Why the critical disorder increases with <math> k </math>?
  </li>
</ol>
<br>





Revision as of 19:27, 3 March 2024



Goal: in this final set of problems, we discuss the interplay between localization and glassiness, by connecting the solution to the Anderson problem on the Bethe lattice with the statistical physics problem of a directed polymer in random media on trees.
Techniques:


Problem 7.2: localization-delocalization transition on the Bethe lattice

We now focus on the self energies, since the criterion for localization is given in terms of these quantities. In this Problem we will determine for which values of parameters localization is stable, estimating the critical value of disorder where the transition to a delocalised phase occurs.


  1. The “localized" solution. We set and . Show that the cavity equation for the self-energies is equivalent to the following pair of coupled equations:

    Justify why the solution corresponding to localization, , is always a solution when ; moreover, in the localized phase when is finite but small one has . How can one argue that this solution has to be discarded, i.e. that delocalisation occurs?


  2. Imaginary approximation and distributional equation. We consider the equations for and neglect the terms in the denominators, which couple the equations to those for the real parts of the self energies (“imaginary” approximation). Moreover, we assume to be in the localized phase, where . Finally, we set and for simplicity. Show that under these assumptions the probability density for the imaginary part, , satisfies

    Show that the Laplace transform of this distribution, , satisfies


  3. The stability analysis. We now wish to check the stability of our assumption to be in the localized phase, , which led to the identity above for . Our assumption is that the typical value of is small, except for cases in which one of the descendants is such that is very small, in which case .
    • Show that if and is not gapped around zero, then , i.e. the distribution has tails contributed by these events in which the local fields happen to be very small.
    • Assume more generally that for large and . Show that this corresponds to for small, with .
    • Show that the equation for gives for small , and therefore this is consistent provided that there exists a solving


  4. The critical disorder. Consider now local fields taken from a uniform distribution in . Compute and show that it is non monotonic, with a local minimum in the interval . Show that increases as the disorder is made weaker and weaker, and thus the transition to delocalisation occurs at the critical value of disorder when . Show that this gives

    Why the critical disorder increases with ?



the directed polymer treatment: KPP (es 1) es 2: The connection to directed polymer: linearisation and stability. Glassiness vs localization -->