L-9: Difference between revisions

From Disordered Systems Wiki
Jump to navigation Jump to search
Line 47: Line 47:
In your homewoork you solved a toy model for the interface:
In your homewoork you solved a toy model for the interface:
<center><math>
<center><math>
\partial_t h(r,t) =  \nable^2 r(r,t)  + F(r)
\partial_t h(r,t) =  \nabla^2 h(r,t)  + F(r)
</math></center>
</math></center>
For simplicity, we assume Gaussian disorder
For simplicity, we assume Gaussian disorder

Revision as of 18:42, 24 March 2024

Multifractality

In the last lecture we discussed that the eigenstates of the Anderson model can be localized, delocalized or multifractal. The idea is to look at the (generalized) IPR

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle IPR(q)=\sum_n |\psi_n|^{2 q} \sim L^{-\tau_q} }

The exponent Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau_q} is called multifractal exponent . Normalization imposes Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau_1 =0 } and the fact that the wave fuction is defined everywhere that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau_0 =-d } . In general Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau_0 } is the fractal dimension of the object we are considering and it is simply a geometrical property.

  • Delocalized eigenstates

In this case, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi_n|^{2} \approx L^{-d} } for all the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L^{d} } sites. This gives

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau_q^{\text{deloc}}=d(q-1) }


  • Multifractal eigenstates.

This case correspond to more complex wave function for which we expect

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi_n|^{2} \approx L^{-\alpha} \quad \text{for}\; L^{f(\alpha)} \; \text{sites} }

The exponent Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha } is positive and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(\alpha)} is called multifractal spectrum . It is a convex function and its maximum is the fractal dimension of the object, in our case d. We can determine the relation between multifractal spectrum and exponent

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle IPR(q)=\sum_n |\psi_n|^{2 q}\sim \int d \alpha L^{-\alpha q} L^{f(\alpha)} }

for large L

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau(q)= \min_{\alpha}{(\alpha q -f(\alpha))} }

This means that for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha^*(q) } that verifies Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(\alpha^*(q)) = q } we have

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau(q)= \alpha^*(q) q -f(\alpha^*(q)) }


A metal has a simple spectrum. Indeed, all sites have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha=d} , hence Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(\alpha=d)=d} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(\alpha\ne d ) =-\infty} . Then becomes Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q} independent. A multifractal has a smooth spectrum with a maximum at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha_0} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(\alpha_0)=d} . At Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q=1} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(\alpha_1)=1} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(\alpha_1)=\alpha_1} .

Larkin model

In your homewoork you solved a toy model for the interface:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial_t h(r,t) = \nabla^2 h(r,t) + F(r) }

For simplicity, we assume Gaussian disorder Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{F(r)}=0} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{F(r)F(r')}=\sigma^2 \delta^d(r-r') } .

You proved that:

  • the roughness exponent of this model is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \zeta_L=\frac{4-d}{2}} below dimension 4
  • The force per unit length acting on the center of the interface is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f= \sigma/\sqrt{L^d}}
  • at long times the interface shape is
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{h(q)h(-q)} = \frac{\sigma^2}{q^{d+2\zeta_L}} }

In the real depinning model the disorder is however a non-linear function of h. The idea of Larkin is that this linearization is correct up, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r_f} the length of correlation of the disorder along the h direction . This defines a Larkin length. Indeed from

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{(h(r)-h(0))^2}= \int _d^dq (\overline{h(q)h(-q)}(1-\cos(q r) \sim \sigma^2 r^{2 \zeta_L} }

You get

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{(h(\ell_L)-h(0))^2}= r_f^2 \quad \ell_L=\left(\frac{r_f}{\sigma} \right)^{1/\zeta_L} }

Above this scale, roguhness change and pinning starts with a crtical force

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_c= \frac{\sigma}{\ell_L^{d/(2 \zeta_L)}} }

In Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d=1} we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell_L=\left(\frac{r_f}{\sigma} \right)^{2/3}}