LBan-II: Difference between revisions

From Disordered Systems Wiki
Jump to navigation Jump to search
Line 173: Line 173:
<Strong>Remark 2:</Strong>
<Strong>Remark 2:</Strong>
This hamiltonian is time dependent because of the multiplicative noise <math>V(x,\tau)/T</math>. For a <Strong> time independent </Strong> hamiltonian, we can use the spectrum of the operator. In general we will have to parts:
This hamiltonian is time dependent because of the multiplicative noise <math>V(x,\tau)/T</math>. For a <Strong> time independent </Strong> hamiltonian, we can use the spectrum of the operator. In general we will have to parts:
 
* A discrete set of eigenvalues <math>E_n</math> with the eigenstates <math>\psi_n(x)</math>


<center> <math>
<center> <math>

Revision as of 18:30, 26 August 2025

Introduction: Interfaces and Directed Polymers

The physical properties of many materials are governed by manifolds embedded in them. Examples include: dislocations in crystals, domain walls in ferromagnets or vortex lines in superconductors. We fix the following notation: - : spatial dimension of the embedding medium – : internal dimension of the manifold – : dimension of the displacement (or height) field

These satisfy the relation:

We focus on two important cases:

Directed Polymers (d = 1)

The configuration is described by a vector function: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{x}(t)} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} is the internal coordinate. The polymer lives in dimensions.

Examples: vortex lines, DNA strands, fronts.

Although polymers may form loops, we restrict to directed polymers, i.e., configurations without overhangs or backward turns.

Interfaces (N = 1)

The interface is described by a scalar height field: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(\vec{r}, t)} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{r} \in \mathbb{R}^d} is the internal coordinate and represents time.

Examples: domain walls and propagating fronts

Again we neglect overhangs or pinch-off: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(\vec{r}, t)} is single-valued

Note that using our notation the 1D front is both an interface and a directed polymer

Thermal Interfaces

The dynamics is overdamped, so that we can neglect the inertial term. The Langevin equation of motion is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial_t h(r,t)= - \mu \frac{\delta E_{pot}}{\delta h(r,t)} + \eta(r,t) }

The first term is the elastic force trying to smooth the interface, the mobility Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu } is the inverse of the viscosity. The second term is the Langevin noise. It is Guassian and defined by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \eta(r,t) \rangle =0, \; \langle \eta(r',t')\eta(r,t) \rangle = 2 d D \delta^d(r-r') \delta(t-t') }

The symbol indicates the average over the thermal noise and the diffusion constant is fixed by the Einstein relation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D= \mu K_B T } . We set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu= K_B=1}

The potential energy of surface tension ( is the stiffness) can be expanded at the lowest order in the gradient:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{pot} = \nu \int d^d r\sqrt{1 +(\nabla h)^2} \sim \text{const.} + \frac{\nu}{2} \int d^d r (\nabla h)^2 }

Hence, we have the Edwards Wilkinson equation:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial_t h(r,t)= \nu \nabla^2 h(r,t) + \eta(r,t) }

Scaling Invariance

The equation enjoys of a continuous symmetry because and cannot be distinguished. This is a condition of scale invariance:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(b r, b^z t) \overset{in law}{\sim} b^{\alpha} h(r,t) }

Here Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z, \alpha } are the dynamic and the roughness exponent respectively. From dimensional analysis

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b^{\alpha-z} \partial_t h(r,t)= b^{\alpha-2} \nabla^2 h(r,t) +b^{-d/2-z/2} \eta(r,t) }

From which you get Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=2 } in any dimension and a rough interface below with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha =(2-d)/2 } .

Width of the interface

Consider a 1-dimensional line of size L with periodic boundary conditions. We consider the width square of the interface

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w_2(t) = \left[\int_0^L \frac{d r}{L} \left(h(r,t) - \int_0^L \frac{dr}{L} h(r,t)\right)\right]^2 }

It is useful to introduce the Fourier modes:

Here Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q=2 \pi n/L, n=\ldots ,-1,0,1,\ldots} and recall Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^L d r e^{iqr}= L \delta_{q,0} } . using de Parseval theorem for the Fourier series

In the last step we used that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat h_q^*(t)= \hat h_{-q}(t) } .

Solution in the Fourier space

show that the EW equation writes

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial_t \hat h_q(t)= -\nu q^2 \hat h_q(t) + \eta_q(t), \quad \text{with} \; \langle \eta_{q_1}(t') \eta_{q_2}(t)\rangle =\frac{2 T}{L} \delta_{q_1,-q_2}\delta(t-t') }

The solution of this first order linear equation writes

  • Assume that the interface is initially flat, namely Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat h_q(0) =0 } . Show that
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \hat h_q(t) \hat h_{-q}(t) \rangle =\begin{cases} \dfrac{T(1 - e^{-2\nu q^{2}t})}{L \nu q^{2}}, & q \neq 0, \\[1.2em] \frac{2 T}{L} t, & q = 0. \end{cases} }
  • The mean width square grows at short times and saturates at long times:

Directed polymers in random media

Let us consider polymers Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(\tau) } of length Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t } , starting in and ending in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x } and at thermal equlibrium at temperature Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} . The partition function of the model writes as

For simplicity, we assume a white noise, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{V(x,\tau) V(x',\tau')} = D \delta(x-x') \delta(\tau-\tau') } . Here, the partition function is written as a sum over all possible paths, corresponding to all possible polymer configurations that start at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} and end at , weighted by the appropriate Boltzmann factor.

Polymer partition function and propagator of a quantum particle

Let's perform the following change of variables: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau=i t' } . We also identifies Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde t= -i t } as the time.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z(x,\tilde t) =\int_{x(0)=0}^{x(\tilde t)=x} {\cal D} x(t') \exp\left[ \frac{i}{\hbar} \int_0^{\tilde t} d t' \frac{1}2(\partial_{t'} x)^2 -V(x(t'),t')\right] }

Note that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S[x]= \int_0^{\tilde t} d t' \frac{1}2(\partial_{t'} x)^2 -V(x(t'),t')} is the classical action of a particle with kinetic energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}2(\partial_\tau x)^2} and time dependent potential Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x(\tau),\tau)} , evolving from time zero to time . From the Feymann path integral formulation, is the propagator of the quantum particle.

In absence of disorder, one can find the propagator of the free particle, that, in the original variables, writes:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_{\text{free}}(x,t)=\frac{e^{-x^2/(2Tt)}}{\sqrt{2 \pi Tt}} }

Feynman-Kac formula

Let's derive the Feyman Kac formula for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z(x,t)} in the general case:

  • First, focus on free paths and introduce the following probability
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P[A,x,t] =\int_{x(0)=0}^{x(t)=x} {\cal D} x(\tau) \exp\left[- \frac{1}{T} \int_0^t d \tau \frac{1}2(\partial_\tau x)^2 \right] \delta\left( \int_0^t d \tau V(x(\tau),\tau)-A \right) }
  • Second, the moments generating function
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_p(x ,t) = \int_{-\infty}^\infty d A e^{-p A} P[A,x,t] =\int_{x(0)=0}^{x(t)=x} {\cal D} x(\tau) e^{-\frac{1}{T} \int_0^t d \tau \frac{1}2(\partial_\tau x)^2 -p \int_0^t d \tau V(x(\tau),\tau)} }
  • Third, the backward approach. Consider free paths evolving up to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t+dt} and reaching Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x}  :
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_p(x,t+dt)= \left\langle e^{-p \int_0^{t+dt} d \tau V(x(\tau),\tau)}\right\rangle= \left\langle e^{-p \int_0^{t} d \tau V(x(\tau),\tau)}\right\rangle e^{-p V(x,t) d t } =[1 -p V(x,t) d t +\dots]\left\langle Z_p(x-\Delta x,t) \right\rangle_{\Delta x} }

Here Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \ldots \rangle} is the average over all free paths, while Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \ldots \rangle_{\Delta x}} is the average over the last jump, namely Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \Delta x \rangle=0 } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \Delta x^2 \rangle=T d t } .

  • At the lowest order we have
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_p(x,t+dt)= Z_p(x,t) +dt \left[ \frac{T}{2} \partial_x^2 Z_p -p V(x,t) Z_p \right] +O(dt^2) }

Replacing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p=1/T} we obtain the partition function is the solution of the Schrodinger-like equation:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial_t Z(x,t) =- \hat H Z = - \left[ -\frac{T}{2}\frac{d^2 }{d x^2} + \frac{V(x,\tau)}{T}\right] Z(x,t) }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z[x,t=0]=\delta(x) }

Remarks

Remark 1:

This equation is a diffusive equation with multiplicative noise. Edwards Wilkinson is instead a diffusive equation with additive noise. The Cole Hopf transformation allows to map the diffusive equation with multiplicative noise in a non-linear equation with additive noise. We will apply this tranformation and have a surprise.

Remark 2: This hamiltonian is time dependent because of the multiplicative noise Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(x,\tau)/T} . For a time independent hamiltonian, we can use the spectrum of the operator. In general we will have to parts:

  • A discrete set of eigenvalues Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_n} with the eigenstates Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_n(x)}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z[x,t] = \left( e^{- \hat H t} \right)_{0 \to x}= \sum_n \psi_n(0) \psi_n^*(x) e^{- E_n t} + \int_0^\infty dE \, \rho(E) \psi_E(0) \psi_E^*(x) e^{- E t}. }