TBan-I: Difference between revisions

From Disordered Systems Wiki
Jump to navigation Jump to search
Line 22: Line 22:
We use the following identity to sum over <math>k</math>:
We use the following identity to sum over <math>k</math>:
<center><math> \sum_{k=0}^{M-1} k \binom{M-1}{k} (A-B)^k B^{M-1-k} = (A-B)\frac{d}{dA} \sum_{k=0}^{M-1} \binom{M-1}{k} (A-B)^k B^{M-1-k} = (M-1)(A-B)A^{M-2} </math></center>
<center><math> \sum_{k=0}^{M-1} k \binom{M-1}{k} (A-B)^k B^{M-1-k} = (A-B)\frac{d}{dA} \sum_{k=0}^{M-1} \binom{M-1}{k} (A-B)^k B^{M-1-k} = (M-1)(A-B)A^{M-2} </math></center>
to arrive at the form:
<center><math> \overline{n(x)} = M (M-1) \int_{-\infty}^\infty dE \; p(E) \left[P(E+x) - P(E)\right] (1-P(E))^{M-2}= M \int_{-\infty}^\infty dE \; \left[P(E+x) - P(E)\right] \frac{d Q_{M-1}(E)}{dE} </math></center>

Revision as of 12:34, 31 August 2025

Nei seguente esercizio useremo le notazioni della statistica dei valori estremi usate nel corso.

exercise 1: La distribuzione di Gumbel

esercizio 2: The weakest link

Exercise 3: number of states above the minimum

Definition of :

Given a realization, is defined as the number of random variables above the minimum such that their value is smaller than . This quantity is a random variable, and we are interested in its average value:

The Final goal is to show that for large 'M', when the extremes are described by the Gumbel distribution :

The key relation for this quantity is:

We use the following identity to sum over :

to arrive at the form: