TBan-I: Difference between revisions

From Disordered Systems Wiki
Jump to navigation Jump to search
Line 37: Line 37:
</math></center>   
</math></center>   
where <math>z = (E-a_M)/b_M</math>.
where <math>z = (E-a_M)/b_M</math>.
Compute the integral and verify that you obtain:

Revision as of 13:24, 31 August 2025

Nei seguente esercizio useremo le notazioni della statistica dei valori estremi usate nel corso.

exercise 1: La distribuzione di Gumbel

esercizio 2: The weakest link

Exercise 3: number of states above the minimum

Definition of :Given a realization of the random energies , define

that is, the number of random variables lying above the minimum but less than . This is itself a random variable. We are interested in its mean value:

The Final goal is to show that, for large 'M' (when the extremes are described by the Gumbel distribution), you have:

Step 1: Exact manipulations: You start from the exact expression for the probability of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} states in the interval:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Prob}[n(x)=k] = M \binom{M-1}{k} \int_{-\infty}^\infty dE \; p(E)\,[P(E+x)-P(E)]^{k}\,[1-P(E+x)]^{M-k-1} }

To compute , you must sum over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} . Use the identity

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=0}^{M-1} k \binom{M-1}{k} (A-B)^k B^{M-1-k} = (A-B)\frac{d}{dA} \sum_{k=0}^{M-1} \binom{M-1}{k} (A-B)^k B^{M-1-k} = (M-1)(A-B)A^{M-2} }

to arrive at the form:

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{M-1}(E) = [1-P(E)]^{M-1}} .

Step 2: the Gumbel limit So far, no approximations have been made. To proceed, we use Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{M-1}(E)\approx Q_M(E)} and its asymptotics Gumbel form:

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z = (E-a_M)/b_M} .

Compute the integral and verify that you obtain: