TBan-I: Difference between revisions
| Line 37: | Line 37: | ||
</math></center> | </math></center> | ||
where <math>z = (E-a_M)/b_M</math>. | where <math>z = (E-a_M)/b_M</math>. | ||
Compute the integral and verify that you obtain: | |||
Revision as of 13:24, 31 August 2025
Nei seguente esercizio useremo le notazioni della statistica dei valori estremi usate nel corso.
exercise 1: La distribuzione di Gumbel
esercizio 2: The weakest link
Exercise 3: number of states above the minimum
Definition of :Given a realization of the random energies , define
that is, the number of random variables lying above the minimum but less than . This is itself a random variable. We are interested in its mean value:
The Final goal is to show that, for large 'M' (when the extremes are described by the Gumbel distribution), you have:
Step 1: Exact manipulations: You start from the exact expression for the probability of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} states in the interval:
To compute , you must sum over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} . Use the identity
to arrive at the form:
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{M-1}(E) = [1-P(E)]^{M-1}} .
Step 2: the Gumbel limit So far, no approximations have been made. To proceed, we use Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{M-1}(E)\approx Q_M(E)} and its asymptotics Gumbel form:
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z = (E-a_M)/b_M} .
Compute the integral and verify that you obtain: