T-7: Difference between revisions
Line 141: | Line 141: | ||
Glassiness vs localization | Glassiness vs localization | ||
== Check out: key concepts of this TD == | === Check out: key concepts of this TD === | ||
Revision as of 18:23, 14 January 2024
Goal: the goal of this set of problems is to derive an estimate for the transition point for the Anderson model on the Bethe lattice.
Techniques: cavity method, Laplace transform, stability analysis.
A criterion for localization
- Green functions and self-energies. Given a lattice with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N }
sites Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a }
, we call Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |a \rangle }
the wave function completely localised in site Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a }
. The Anderson model has Hamiltonian
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H= W \sum_{a} \epsilon_a |a \rangle \langle a| - \sum_{<a, b>} t_{ab} \left(|a \rangle \langle b|+ |b \rangle \langle a| \right) }
where the local fields Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_a } are random variables, independent and distributed according to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(\epsilon)} . We introduce the Green functions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_{ab}(z) } and the local self-energies Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_a(z)} : these are functions of a complex variable belonging to the upper half of the complex plane, and are defined by [NOTA SU STILTJIES]
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_{ab}(z)= \langle a| \frac{1}{z-H}| b \rangle , \quad \quad G_{aa}(z)= \langle a| \frac{1}{z-H}| a\rangle = \frac{1}{z- \epsilon_a-\sigma_a(z)}. }
It is clear that when the kinetic term Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V } in the Hamiltonian vanishes, the local self-energies vanish; these quantities encode how much the energy levels Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_a } are shifted by the presence of the kinetic term Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V } . They are random functions, because the Hamiltonian contains randomness. They encode properties on the spectrum of the Hamiltonian; the local density of eigenvalues Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_{a, N}(E)} for an Hamiltonian of size Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N } is in fact given by
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_{a,N}(E)=-\frac{1}{\pi}\lim_{\eta \to 0} \Im G_{aa}(E+ i \eta) = \sum_{\alpha=1}^N |\langle E_\alpha| a\rangle|^2 \delta(E-E_\alpha), } where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_\alpha } are the eigenvalues of the Hamiltonian. [NOTA SU PLEMELJI]
- A criterion for localization. The local self-energies encode some information on whether localization occurs. More precisely, one can claim [CITE] that localization occurs whenever the imaginary part of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma(E+ i\eta)}
goes to zero when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta \to 0}
. Given the randomness, this criterion should however be formulated probabilistically. One has:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{\eta \to 0} \lim_{N \to \infty} \mathbb{P}\left(- \Im \sigma_a(E+i \eta)>0 \right)=0 \quad \Longrightarrow \quad \text{Localization} }
Notice that in this criterion, the probability plays the role of an order parameter (like the magnetization in ferromagnets, or the overlap in spin glasses), and the imaginary part Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta }
plays the role of a symmetry breaking field (like the magnetic field in the ferromagnet, or the coupling between replicas in spin glasses). However, the localization transition has nothing to do with equilibrium, i.e., it is not related to a change of structure of the Gibbs Boltzmann measure; rather, it is a dynamical transition. Pushing the analogy with equilibrium phase transitions, one can say that the localised phase corresponds to the disordered phase (the one in which symmetry is not broken, like the paramagnetic phase). The symmetry in question is time-reversal symmetry.
- Green functions identities. Consider an Hamiltonian split into two parts, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H= H_0 + V }
. Show that the following general relation holds (Hint: perturbation theory!)
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G=G^0+ G^0 V G, \quad \quad G^0 =\frac{1}{z-H_0}, \quad \quad G =\frac{1}{z-H}. }
- Cavity equations. We now apply this to a specific example: we consider a Bethe lattice, and choose one site 0 as the root. We then choose Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V }
to be the kinetic terms connecting the root to its Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k+1 }
neighbours Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_i }
,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V= -\sum_{i=1}^{k+1} t_{0 a_i} \left( |a_i \rangle \langle 0|+ |0 \rangle \langle a_i|\right) }
For all the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_i } with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=1, \cdots, k+1 } we introduce the notation
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G^{\text{cav}}_{a_i} \equiv G^0_{a_i a_i}, \quad \quad \sigma^{\text{cav}}_{a_i} \equiv \sigma^0_{a_i a_i}, }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma^0 } is the self energy associated to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G^0 } . Show that, due to the geometry of the lattice, with this choice of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V } the Hamiltonian Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_0 } is decoupled and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G^{\text{cav}}_{a_i} } is the local Green function that one would have obtained removing the root 0 from the lattice, i.e., creating a “cavity” (hence the suffix). Moreover, using the relation above show that
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_{00}(z)= \frac{1}{z-\epsilon_0 - \sum_{i=1}^{k+1} t^2_{0 a_i}G^{\text{cav}}_{a_i}(z)} }
Iterating this argument, show that if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial a_i } denotes the collection of “descendants" of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_i} , i.e. sites that are nearest neighbours of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_i } except the root, then
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G^{\text{cav}}_{a_i}(z)= \frac{1}{z-\epsilon_{a_i} - \sum_{b \in \partial a_i}t^2_{a_i b}G^{\text{cav}}_{b}(z)}, \quad \quad \sigma^{\text{cav}}_{a_i}(z)=\sum_{b \in \partial a_i}t^2_{a_i b}G^{\text{cav}}_{b}(z)=\sum_{b \in \partial a_i} \frac{t^2_{a_i b}}{z- \epsilon_b - \sigma^{\text{cav}}_{b}(z)} }
- Equations for the distribution. Justify why the cavity functions appearing in the last equation above are independent and identically distributed random variables, and therefore the cavity equations can be interpreted as self-consistent equations for the distribution of the cavity functions.
- The “localized" solution. We set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=E+ i \eta }
and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma^{\text{cav}}_{a}(z)= R_a(z) -i \Gamma_a(z)}
. Show that the cavity equation for the self-energies is equivalent to the following pair of coupled equations:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_a= \sum_{b \in \partial a} t_{ab}^2 \frac{\Gamma_b + \eta}{(E- \epsilon_b - R_b)^2+ (\Gamma_b +\eta)^2}, \quad \quad R_a = \sum_{b \in \partial a} t_{ab}^2 \frac{E- \epsilon_b - R_b}{(E- \epsilon_b - R_b)^2+ (\Gamma_b +\eta)^2} }
Justify why the solution corresponding to localization, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_a=0 } , is always a solution when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta \to 0 } ; moreover, in the localized phase when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta } is finite but small one has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_a \sim O(\eta) } . How can one argue that this solution has to be discarded, i.e. that delocalisation occurs?
- Imaginary approximation and distributional equation. We consider the equations for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma_a }
and neglect the terms in the denominators, which couple the equations to those for the real parts of the self energies (“imaginary” approximation). Moreover, we assume to be in the localized phase, where . Finally, we set and for simplicity. Show that under these assumptions the probability density for the imaginary part, , satisfies
Show that the Laplace transform of this distribution, , satisfies
- The stability analysis. We now wish to check the stability of our assumption to be in the localized phase, , which led to the identity above for . Our assumption is that the typical value of is small, except for cases in which one of the descendants is such that is very small, in which case .
- Show that if and is not gapped around zero, then , i.e. the distribution has tails contributed by these events in which the local fields happen to be very small.
- Assume more generally that for large and . Show that this corresponds to for small, with .
- Show that the equation for gives for small , and therefore this is consistent provided that there exists a solving
- The critical disorder. - the solution for beta - the estimate for the transition Next TD: the directed polymer treatment: KPP (es 1) es 2: The connection to directed polymer: linearisation and stability. Glassiness vs localization
- Anderson. [1]
- Abou Chacra, .
Problem 7.1: the Bethe lattice, recursion relations and cavity
The Bethe lattice is a lattice with a regular tree structure: each node has a fixed number of neighbours Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k } is the branching number, and there are no loops (see sketch). In these problems we consider the Anderson model on such lattice.
Problem 7.2:
We now focus on the self energies, since the criterion for localization is given in terms of these quantities. In this Problem we will determine for which values of parameters localization is stable, estimating the critical value of disorder where the transition to a delocalised phase occurs.