T-8: Difference between revisions
Line 119: | Line 119: | ||
== Check out: key concepts of this TD == | == Check out: key concepts of this TD == | ||
Green functions, self-energies, trees and cavity method, the criterion for localization. | Green functions, self-energies, return probability amolitude, decay rates, trees and cavity method, the criterion for localization. | ||
== References == | == References == | ||
* The Anderson model was formulated by P. W. Anderson in 1958, in the paper <em> Absence of diffusion in certain random lattices </em>, Phys. Rev. 109, 1492. | * The Anderson model was formulated by P. W. Anderson in 1958, in the paper <em> Absence of diffusion in certain random lattices </em>, Phys. Rev. 109, 1492. |
Revision as of 11:48, 13 March 2024
Goal: the goal of this set of problems is to derive a criterion for localization on a peculiar lattice, the Bethe lattice.
Techniques: green functions, recursion relations, cavity method.
A criterion for localization
- Green functions and self-energies. Given a lattice with sites , we call the wave function completely localised in site . The Anderson model has Hamiltonian
where the local fields are random variables, independent and distributed according to some distribution . We introduce the Green functions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G_{ab}(z) } and the local self-energies Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_a(z):} these are functions of a complex variable belonging to the upper half of the complex plane,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=E+ i \eta, \quad \quad \eta>0 }
and are defined by
It is clear that when the kinetic term Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V } in the Hamiltonian vanishes, the local self-energies vanish: they encode how much the energy levels Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_a } (that are the eigenvalues when ) are shifted by the presence of the kinetic term Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V } . They are random functions, because the Hamiltonian contains randomness. The Green functions and the self-energies encode properties on the spectrum of the Hamiltonian; the local density of eigenvalues Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_{a, N}(E)} for an Hamiltonian on a lattice of size is indeed given by
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_{a,N}(E)=-\frac{1}{\pi}\lim_{\eta \to 0} \Im G_{aa}(E+ i \eta) = \sum_{\alpha=1}^N |\langle E_\alpha| a\rangle|^2 \delta(E-E_\alpha), } where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_\alpha } are the eigenvalues of the full Hamiltonian and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |E_\alpha \rangle } the corresponding eigenstates.
- Self-energies and return probabilities. The local self-energies encode some information on the system’s dynamics, and thus on whether localization occurs. Consider a quantum particle initialised on the site Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a }
at . The return probability amplitude , i.e. the probability amplitude to find the particle on the same site at later time, is
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{A}_a(t)= \theta(t) \langle a| e^{-i t H} | a \rangle =\lim_{\eta \to 0} \int \frac{i dE}{2 \pi}e^{-i t H} G_{aa}(E+ i \eta)=\lim_{\eta \to 0} \int \frac{i dE}{2 \pi}e^{-i t H} G_{aa}(E+ i \eta)=\lim_{\eta \to 0} \int \frac{i dE}{2 \pi}\frac{e^{-i t H}}{E+ i \eta - \epsilon_a-\sigma_a(E + i \eta)}. }
If the self-energy has a non-zero imaginary part:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{\eta \to 0} \lim_{N \to \infty}\sigma_a(E + i \eta)= R(E)-i \Gamma(E), }
then one can easily show (Residue theorem) that the return probability amplitude decays exponentially
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{A}_a(t) \sim A(t)e^{-\gamma t}+ B(t), \quad \quad \quad \gamma= \Gamma(\epsilon_a) + O(V^4). }
Therefore, the system is not localized, since the probability to find it, at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t \gg 1} , in the same configuration where it was at decays very fast.
- A criterion for localization. Motivated by the reasoning above, one can claim that localization occurs whenever the imaginary part of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma(E+ i\eta)}
goes to zero when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta \to 0}
. Given the randomness, this criterion should however be formulated probabilistically, as
- Green functions identities. Consider an Hamiltonian split into two parts, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H= H_0 + V }
. Show that the following general relation for the Green functions holds (Hint: perturbation theory!)
- Cavity equations. We now apply this to a specific example: we consider a Bethe lattice, and choose one site 0 as the root. We then choose Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V }
to be the kinetic terms connecting the root to its Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k+1 }
neighbours ,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V= -\sum_{i=1}^{k+1} V_{0 a_i} \left( |a_i \rangle \langle 0|+ |0 \rangle \langle a_i|\right) }
For all the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_i } with we introduce the notation
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G^{\text{cav}}_{a_i} \equiv G^0_{a_i a_i}, \quad \quad \sigma^{\text{cav}}_{a_i} \equiv \sigma^0_{a_i a_i}, }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma^0 } is the self energy associated to . Show that, due to the geometry of the lattice, with this choice of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V } the Hamiltonian Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_0 } is decoupled and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G^{\text{cav}}_{a_i} } is the local Green function that one would have obtained removing the root 0 from the lattice, i.e., creating a “cavity” (hence the suffix). Moreover, using the relation above show that
Iterating this argument, show that if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial a_i } denotes the collection of “descendants" of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_i} , i.e. sites that are nearest neighbours of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_i } except the root, then
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G^{\text{cav}}_{a_i}(z)= \frac{1}{z-\epsilon_{a_i} - \sum_{b \in \partial a_i}t^2_{a_i b}G^{\text{cav}}_{b}(z)}, \quad \quad \sigma^{\text{cav}}_{a_i}(z)=\sum_{b \in \partial a_i}t^2_{a_i b}G^{\text{cav}}_{b}(z)=\sum_{b \in \partial a_i} \frac{t^2_{a_i b}}{z- \epsilon_b - \sigma^{\text{cav}}_{b}(z)} }
- Equations for the distribution. Justify why the cavity functions appearing in the denominators in the last equations above are independent and identically distributed random variables, and therefore the cavity equations can be interpreted as self-consistent equations for the distribution of the cavity functions.
- The Anderson model was formulated by P. W. Anderson in 1958, in the paper Absence of diffusion in certain random lattices , Phys. Rev. 109, 1492.
Problems
Problem 8: the Bethe lattice, recursion relations and cavity
The Bethe lattice is a lattice with a regular tree structure: each node has a fixed number of neighbours , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k } is the branching number, and there are no loops (see sketch). In these problems we consider the Anderson model on such lattice.
Check out: key concepts of this TD
Green functions, self-energies, return probability amolitude, decay rates, trees and cavity method, the criterion for localization.