L-2
Stochastic Interfaces and growth processes
The physical properties of many materials are controlled by the interfaces embedded in it. This is the case of the dislocations in a crystal, the domain walls in a ferromagnet or the vortices in a supercoductors. In the next lecture we will discuss how impurities affect the behviour of these interfaces. Today we focus on thermal fluctuations and introduce two important equations for the interface dynamics: the Edward Wilkinson euqation and the Kardar Parisi Zhang equation.
An interface at Equilibrium: the Edward Wilkinson equation
Consider domain wall fluctuating at equilibrium at the temparature . Here is time, defines the d-dimensional coordinate of the interface and is the scalar height field. Hence, the domain wall separating two phases in a film has , in a solid instead .
Two assumptions are done:
- Overhangs, pinch-off are neglected, so that is a scalar univalued function.
- The dynamics is overdamped, so that we can neglect the inertial term.
The Langevin equation of motion is