L-2

From Disordered Systems Wiki
Jump to navigation Jump to search

Goal: The physical properties of many materials are controlled by the interfaces embedded in it. This is the case of the dislocations in a crystal, the domain walls in a ferromagnet or the vortices in a supercoductors. In the next lecture we will discuss how impurities affect the behviour of these interfaces. Today we focus on thermal fluctuations and introduce two important equations for the interface dynamics: the Edward Wilkinson euqation and the Kardar Parisi Zhang equation.

An interface at Equilibrium: the Edward Wilkinson equation

Consider domain wall fluctuating at equilibrium at the temparature . Here is time, defines the d-dimensional coordinate of the interface and is the scalar height field. Hence, the domain wall separating two phases in a film has , in a solid instead .

Two assumptions are done:

  • Overhangs, pinch-off are neglected, so that is a scalar univalued function.
  • The dynamics is overdamped, so that we can neglect the inertial term.

Derivation

The Langevin equation of motion is

The first term is the elastic force trying to smooth the interface, the mobility Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu } is inversily proportional to the viscosity. The second term is the Langevin Gaussian noise defined by the correlations

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \eta(r,t) \rangle =0, \; \langle \eta(r',t')\eta(r,t) \rangle = 2 D \delta^d(r-r') \delta(t-t') }

The symbol indicates the average over the thermal noise. The diffusion constant is fixed by the Eistein relation (fluctuation-dissipation theorem):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D= \mu K_B T }

The potential energy of surface tension can be expanded at the lowest order in the gradient:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{pot} = \sigma \int d^d r\sqrt{1 +(\nabla h)^2} \sim \text{const.} + \frac{\sigma}{2} \int d^d r (\nabla h)^2 }

Setting we have the Edward Wilkinson equation:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial_t h(r,t)= \nabla^2 h(r,t) + \eta(r,t) }

Scaling Invariance

The equation enjoys of a continuous symmetry because Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(r,t) } and cannot be distinguished. This is a conndition os scale invariance:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(b r, b^z t) \overset{in law}{\sim} b^{\alpha} h(r,t) }

Here Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z, \alpha } are the dynamic and the roughness exponent rispectively. From dimensional analysis

From which you get Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=2 } in any dimension and a rough interface below Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d=2 } with

Exercise L2-A: Solve Edward-Wilkinson