LBan-II

From Disordered Systems Wiki
Jump to navigation Jump to search

Introduction: Interfaces and Directed Polymers

The physical properties of many materials are governed by manifolds embedded in them. Examples include: dislocations in crystals, domain walls in ferromagnets or vortex lines in superconductors. We fix the following notation: - : spatial dimension of the embedding medium – : internal dimension of the manifold – Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} : dimension of the displacement (or height) field

These satisfy the relation:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D = d + N}

We focus on two important cases:

Directed Polymers (d = 1)

The configuration is described by a vector function: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{x}(t)} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} is the internal coordinate. The polymer lives in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D = 1 + N} dimensions.

Examples: vortex lines, DNA strands, fronts.

Although polymers may form loops, we restrict to directed polymers, i.e., configurations without overhangs or backward turns.

Interfaces (N = 1)

The interface is described by a scalar height field: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(\vec{r}, t)} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{r} \in \mathbb{R}^d} is the internal coordinate and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} represents time.

Examples: domain walls and propagating fronts

Again we neglect overhangs or pinch-off: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(\vec{r}, t)} is single-valued

Note that using our notation the 1D front is both an interface and a directed polymer

Thermal Interfaces

  • The dynamics is overdamped, so that we can neglect the inertial term.

The Langevin equation of motion is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial_t h(r,t)= - \mu \frac{\delta E_{pot}}{\delta h(r,t)} + \eta(r,t) }

The first term Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - \delta E_{pot}/\delta h(r,t) } is the elastic force trying to smooth the interface, the mobility Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu } is the inverse of the viscosity. The second term is the Langevin noise. It is Guassian and defined by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \eta(r,t) \rangle =0, \; \langle \eta(r',t')\eta(r,t) \rangle = 2 d D \delta^d(r-r') \delta(t-t') }

The symbol Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \ldots \rangle} indicates the average over the thermal noise and the diffusion constant is fixed by the Einstein relation Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D= \mu K_B T } . We set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu= K_B=1}

The potential energy of surface tension (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu } is the stiffness) can be expanded at the lowest order in the gradient:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{pot} = \nu \int d^d r\sqrt{1 +(\nabla h)^2} \sim \text{const.} + \frac{\nu}{2} \int d^d r (\nabla h)^2 }

Hence, we have the Edwards Wilkinson equation:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial_t h(r,t)= \nu \nabla^2 h(r,t) + \eta(r,t) }

Scaling Invariance

The equation enjoys of a continuous symmetry because Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(r,t) } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(r,t)+c } cannot be distinguished. This is a condition of scale invariance:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(b r, b^z t) \overset{in law}{\sim} b^{\alpha} h(r,t) }

Here are the dynamic and the roughness exponent respectively. From dimensional analysis

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b^{\alpha-z} \partial_t h(r,t)= b^{\alpha-2} \nabla^2 h(r,t) +b^{-d/2-z/2} \eta(r,t) }

From which you get Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=2 } in any dimension and a rough interface below with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha =(2-d)/2 } .

Explicit Solution

For simplicity, consider a 1-dimensional line of size L with periodic boundary conditions. It is useful to introduce the Fourier modes:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat h_q(t)= \frac{1}{L} \int_0^L e^{iqr} h(r,t), \quad h(r,t)= \sum_q e^{-iqr} \hat h_q(t) }

Here and recall Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^L d r e^{iqr}= L \delta_{q,0} } .

  • Show that the EW equation writes
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial_t \hat h_q(t)= -\nu q^2 \hat h_q(t) + \eta_q(t), \quad \text{with} \; \langle \eta_{q_1}(t') \eta_{q_2}(t)\rangle =\frac{2 T}{L} \delta_{q_1,-q_2}\delta(t-t') }

The solution of this first order linear equation writes

  • Assume that the interface is initially flat, namely Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat h_q(0) =0 } . Show that
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \hat h_q(t) \hat h_{-q}(t) \rangle = \frac{2 T}{L} \int_0^t d s e^{-2 \nu q^2 (t-s)} \eta_q(s) =\begin{cases} \dfrac{1 - e^{-2\nu q^{2}t}}{2\nu q^{2}}, & q \neq 0, \\[1.2em] t, & q = 0. \end{cases} }
  • Compute the width . Comment about the roughness and the short times growth.